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Abstract

In the recent years, data has dramatically increased not only in amount but also in value. Therefore, a
growing number of scientific institutions counts on database systems benefiting from less memory usage,
prompt real-time analysis and protected security. This paper examined how Matlab-analysis can be
potentially transformed into database-supported evaluations in SQL and NoSQL systems. Thereby, this
work focuses on the Matlab analysis that is performed by researchers of the Leibniz-Institute for Baltic
Sea Research working with highly sensitive physical sensor-data gathered by a sampling station in the
Godland Basin. Due to the highly sophisticated analysis, a simplified reference model was developed to
illustrate the transformation. Furthermore, an exemplary data model was constructed to represent the
broad variety of semi-structured data. Based on the gathered data and the Matlab scripts, two examples
were included in the reference model. This involved sorting and polynomial evaluation for computing
conductivity. Based on the latest state of art and the data properties, three individual databases were
chosen for the transformation. As a relational DBMS, PostgreSQL has been picked. Furthermore, two
non-relational databases were chosen: Apache’s Cassandra as column store and MongoDB as document
store. Generally, it could be shown that no database is capable to transform the entirety of performed
Matlab functionalities on its own, but relational databases seem to be the best fit. Therefore, it is
recommended to launch a holistic approach that combines the benefits of both Matlab and relational
databases.





Contents

List of Acronyms I

List of Figures II

List of Tables II

Listings III

1. Introduction 1

2. Background 2
2.1. The GODESS Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2. Gathered Information and Data Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3. Performed Matlab-Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3. State of the Art 10
3.1. ACID vs. BASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2. SQL-Database-Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3. NoSQL-Database-Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4. Sub-Categories of NoSQL Database-Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4. Concept 22
4.1. General Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2. Used Programming Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3. Categorization and Comparison of Functionalities . . . . . . . . . . . . . . . . . . . . . . . 28
4.4. Sample Functionalities and Exemplary Data Model . . . . . . . . . . . . . . . . . . . . . . 32

5. Implementation 35
5.1. Reference Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2. Prerequisite: Constructing the Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3. Database-Supported Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4. Database-Supported Polynomial Evaluation for Conductivity . . . . . . . . . . . . . . . . 45

6. Discussion 49

7. Conclusion 52

A. Appendix 53

Bibliography 57





List of Acronyms

BenthosDB Benthos Database
BSON Binary JSON

CQL Cassandra Query Language

DBaaS Database as a Service

GODESS Gotland Deep Environmental Sampling Station

HTTP Hypertext Transfer Protocol

I/O Input/Output
IOW Leibniz Institute for Baltic Sea Research

Warnemünde

OLAP Online Analytical Processing
OLTP Online Transactional Processing

PIP Profiling Instrument Platform

RDBMS Relational Database Management Systems

SQL Structured Query Language

UDF User-Defined Function
UnQL Unstructured Query Language

I



List of Figures

1. Graphical Illustration of the GODESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Exemplary Plot across multiple Deployments (Temperature) . . . . . . . . . . . . . . . . . 8
3. Exemplary Plot across multiple Deployments (Salinity) . . . . . . . . . . . . . . . . . . . . 9

4. CAP-Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5. Illustration of a MapReduce Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6. Methodological Design of Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

List of Tables

1. Summary of Differences between SQL and NoSQL Database Systems . . . . . . . . . . . . 21

2. Degree of Technical Feasibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3. PostgreSQL, Cassandra and MongoDB: Data Models and Designation . . . . . . . . . . . 27
4. Identified Functions: Comparison across Database-Systems based on Degree of Feasibility 28
5. Chosen Functions: Comparison across Database-Systems based on Degree of Feasibility . 32
6. Exemplary Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7. Results of the Reference Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8. Sorting: Comparison across Database-Systems based on Degree of Feasibility . . . . . . . 41
9. Sorted Output in PostgreSQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
10. Sorted Output in Cassandra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
11. Execution Times for Sorting in Milliseconds . . . . . . . . . . . . . . . . . . . . . . . . . . 44
12. Polynomial Evaluation: Comparison across Database-Systems based on Degree of Feasibility 45
13. Polynomial Evaluation for Conductivity: Output of all Systems . . . . . . . . . . . . . . . 48
14. Execution Times for Polynomial Evaluation in Milliseconds . . . . . . . . . . . . . . . . . 48

II



Listings

2.1. Extract of an exemplary CTD-File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2. Extract of an exemplary TriOS-File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3. Extract of an exemplary Nortek-File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4. Calibrated Metadata for Measuring Conductivity . . . . . . . . . . . . . . . . . . . . . . . 6

4.1. SELECT-statement in SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2. find()-statement in MongoDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1. Data as Column Vectors in Matlab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2. Binding Vector Parts to Variable Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3. Sorting Vectors on an Index Level in Matlab . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4. Polynomial Evaluation in Matlab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.5. Relational Model in PostgreSQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.6. Creating Tuples in PostgreSQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.7. Creating a Keyspace in Cassandra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.8. Entering the Keyspace in Cassandra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.9. Column Family Model in Cassandra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.10. Creating Key-Value-Pairs in Cassandra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.11. Creating a New Database in MongoDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.12. Creating a Collection in MongoDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.13. Collection Model in MongoDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.14. Sorting by Timestamp in PostgreSQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.15. Automated Sorting by Clustering Key in Cassandra . . . . . . . . . . . . . . . . . . . . . 42
5.16. Sorting by Timestamp in MongoDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.17. Sorted Output in MongoDB (Extract) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.18. Polynomial Evaluation in PostgreSQL (Scalar Expression) . . . . . . . . . . . . . . . . . . 45
5.19. Polynomial Evalutation in PostgreSQL (UDF) . . . . . . . . . . . . . . . . . . . . . . . . 46
5.20. Polynomial Evaluation in Cassandra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.21. Polynomial Evaluation in MongoDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

III





1. Introduction

Big data is on the rise. But not only that data is growing in concerns of quantity, it is also enormously
increasing in value. Simultaneously, the quality of big amounts of data is decreasing. Thus, finding appro-
priate methods for processing these highly precious amounts of unstructured data has become a greatly
significant issue. Thereby, the data is generated by multiple sources such as sensor systems. Since they
are getting cheaper, smaller and easier to maintain, the deployment of sensors is increasing and they are
used in a growing number of applications in both industry and the scientific sector. [VVM12] However, not
every company that is making use of sensor technology stores the gathered data in a database-supported
way. Thus, data processing can be highly storage as well as time-consuming. As a consequence, compa-
nies and scientists are searching for solutions for storing their data in a more efficient way. While some
prefer to store the data in traditional SQL-based databases due to their benefits in consistency, others
prioritize NoSQL databases because of their high flexibility and information promptness. [SK11]

One German research institute that finds itself strongly involved in the processes of this development
is the Leibniz Institute for Baltic Sea Research Warnemünde (IOW). In the course of several projects,
the institute collects biological, chemical, physical and geological data about different environmental pa-
rameters of the Baltic Sea. The data is gathered either by fixed profiling stations or by maritime field
trips. Due to the high variety of heterogeneous data, the IOW sees potential for improvement in the
way the data is stored and processed. In cooperation with the Database Research Group (DBIS) of
the University of Rostock, the IOW is looking for concepts to face this problem. [BKM+17] Therefore, the
DBIS group supports the IOW in order to homogenize this eclectic shaped diversity of information in
the long-term. The data is generated by a bunch of third-party funded projects. Thereby, the Benthos
Database (BenthosDB) guided by the research group "Ecological benthic organisms" and the Gotland
Deep Environmental Sampling Station (GODESS) supervised by the research group "Chemical in-situ
sensors" belong to the most important undertakings at the IOW. While BenthosDB already uses MySQL
as database-supported platform, the analyses performed by the GODESS project still remain unsup-
ported. Therefore, this paper will focus on the analyses conducted on the GODESS data. For processing
this data, researchers are using Matlab which is a widely used mathematical analytics and visualization
software.

The aim of this thesis is to analyze how the Matlab analysis programs used within the scope of the
GODESS project and implemented by scientists of the IOW can potentially be transferred into database-
supported evaluations on both SQL and NoSQL database systems. Thereby, the purpose is to transform
fractions of the Matlab analysis into various database types in order to demonstrate the benefits and draw-
backs of each type. In chapter 2, it will be analyzed, how the gathered data is structured and processed in
Matlab. In chapter 3, this work will furthermore provide an overview about the latest state of art involv-
ing current database systems and discuss the advantages and disadvantages as well as application areas for
SQL and NoSQL platforms. In chapter 4, it will be further discussed which parts of the Matlab analysis
are considered to be realizable on a database level and which not. In chapter 5, some identified functions
will be finally implemented in an exemplary manner on different database systems including both SQL
and NoSQL platforms. In doing so, PostgeSQL is used as a SQL-based platform whereas MongoDB and
Cassandra are used as representatives of NoSQL databases.
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2. Background

Like many scientific and economic institutions the IOW has gathered a broad variety of heterogenic data
over the recent hundred years. This data was gathered by different projects, profiling stations and research
ships. Due to the high heterogeneity of data, there is an increasing need of homogenization as well as new
storing techniques. Therefore, the IOW cooperates with the University of Rostock. The purpose is to
create a pipeline for integrating the heterogeneous measurement data into database-supported solutions
that is taking account of both data provenance and temporal aspects. [BKM+17] The IOW has adapted
MySQL as a representative for relational database systems for some of their projects like, for instance, the
BenthosDB. This project gathers data on a research vessel navigated on several routes across the Baltic
Sea. In contrast to the Benthos project, the GODESS is embedded in the Gotland Basin and collects
the data within a fixed spot. In case of the GODESS profiling station, there is no database-supported
solution, yet. The analyses are still performed on a file level which means that files are stored locally and
not centralized on a database server.

Consequently, every user who wants to work on those files needs to copy the files to his terminal which
creates redundancy as well as storage issues. Since there is no historization of changes, the formerly ex-
erted methods lack in terms of data provenance and in the backtracking of file changes. An adequate data
provenance would imply that every step of the analyses can be potentially traced without extensive ef-
fort. Since these requirements are not fulfilled at the moment, there are difficulties to reconstruct changes
made by the users. In addition, privacy aspects are realized only on a low granular level. These aspects
include both the privacy of the user’s personal data as well as the security of the data used for the analysis.

The smallest possible granularity that can be realized is the file level. Furthermore, concurrent multi-
user operations are currently impossible. Additionally, it is impossible to allow users to read or view
individual values from the files without firstly editing the files. Thus, access to the entire data file has to
be enabled or permitted. All in all, these arguments underline the need for database-supported solutions
which are considered to be less storage and time-consuming when it comes to semi- or unstructured
data. Performing the Matlab analysis or at least some parts of it, on a database level could potentially
lead to a higher information promptness and decrease main memory usage. Before we can discuss which
types of databases will be suitable in this application, we firstly need to understand how the sampling
station works, how the measured data is structured and how the performed Matlab anaylsis programs
are scripted.

2.1. The GODESS Project

As a profiling embedment located in the Godland Basins the GODESS constitutes a measuring platform
for investigating environmental parameters. In particular, physical and chemical variables in different
depths of the Baltic Sea are measured. The sensor system of the sampling station is situated on a so
called Profiling Instrument Platform (PIP). Thereby, the data is generated in-situ which means that
information is obtained directly on site and not influenced by external parameters. The following section
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2. Background

will explain the functional design as well as the basic instruments used for measuring the parameters as
an entry point for understanding how the data is processed. Figure 1 illustrates how the GODESS is
constructed and embedded in the Godland Basin. Thereby, it shows of which components the GODESS
consists and how they act in concert. Basically the components split into the PIP (A), an underwater
winch (B), a bottom weight (C) and an acoustic releaser (D).

Figure 1.: Graphical Illustration of the GODESS [Pri19]

The GODESS operates in the depth interval from 180 meters till 30 meters below the water surface. In
a depth of 220 meter below the water surface at the bottom of the Baltic Sea, there is the bottom weight
working as an anchor which provides a first recovery line. 35 meter higher, there is the acoustic releaser
equipped with a second 400 meter long recovery line coiled on a roll. The acoustic releaser is used for
regular recovery. If the acoustic release mechanism does not work, the bottom weight’s recovery line
can be used for an emergency retrieval. Another ten meters higher you can find the underwater winch
equipped with floatation panels. It is powered by four batteries and enables taring up and down inside
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2. Background

the water column. As the last component, the PIP is situated on top of this construction. It contains
the sensor system and has its own floatation panels. There were used two slightly different profiling
platforms. From 2010 till 2013 the PIP-1 has been used. In 2013, it was replaced by another platform
called PIP-2.

Sensors typically output their measurements at regular intervals. [VVM12] Concerning this sampling station
it is important to notice that there is no steady investigation, since it is deployed only during determined
time frames. One deployment is defined as the release of the sampling station as well as the time between
release and recovery of the station. The deployments are consecutively numbered which means that each
measurement cycle has a distinct number as identifier. Dependent on the programmed configuration the
deployment interval ranges from several weeks to several months. There are measured various so called
profiles during one single deployment. The number of profiles thereby also depends on the programmed
configuration. A profile consists of two phases: First, the PIP moves up until it is right below the sur-
face. Then, the PIP moves down again till it arrives at the underwater winch. The execution of both
consecutive steps is defined as one profile.

The profiles are programmed by the researchers to be performed at a fixed time. At this specific point in
time, the underwater winch releases the lock for unwinding the line. Simultaneously, the floatation panels
of the PIP ensure that the line unwinds in control. In the best case, gathering the sensor data by the PIP
should be synchronized with the unlocking mechanism inside the underwater winch. Since there is no
communication between the PIP and the underwater winch, internal real-time clocks are used to ensure
this synchronisation. Because those clocks offer a slightly lower precision than direct communication,
there is a little difference in time, the so called drift, between the two components. As a consequence,
the PIP starts gathering sensor data two minutes before the underwater winch actually releases the lock.

The station is equipped with several different sensors developed to measure different parameters. This
mainly includes a Sea & Sun Technology CTD 90 M Multiparameter Probe, a Rinko Oxygen Optode, a
TriOS ProPS Sensor and an Aquadopp Flow Meter from Nortek. Like the name suggests, the CTD Probe
measures conductivity, temperature, depth (CTD) and additional parameters like pressure or light trans-
mission. Moreover, the Rinko Optode is used to measure oxygen content. In addition, the TriOS Sensor
measures nitrate values based on spectral data and the Aquadopp Sensor investigates parameters used for
describing the water flow. All sensors are connected to a central data logger, the IOW PowerLogger. It
creates three seperate txt-files for the CTD-meter, the spectral data sensor and the flow meter. Thereby,
few data from the flow meter and the spectral data meter is also written in the CTD-file. In contrast,
data from the oxygen optode and the CTD-meter is included solely in the CTD-file. In summary, the
sensor system investigates a wide range of water parameters including CTD (conductivity, temperature
and depth), soluted oxygen, turbidity, Chl a florescense, pH value and redox potential and stores the
measured data in three separate files.

2.2. Gathered Information and Data Properties

As mentioned earlier, the data-files are generated by the IOW PowerLogger which produces three kinds
of data files that are saved in txt-format. The files are generated per day and can contain information
of more than one profile. The data has no standardised structure like XML or JSON and consists of
either key-value-pairs or single values separated by delimiters such as commas or spaces. In addition,
each file contains specific metadata describing the file or characterising the format of the payload. This
produces three divergent structured TXT-files. Since there indeed is a certain pattern of structure in
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2. Background

each document, but this structure is dependent on the relative sensor and differs from deployment to
deployment, the files will be classified as semi-structured documents.

Files generated for the CTD-meter are saved in the AyymmddX.txt format. The first letter has no
special meaning anymore. It was once added to the file name to ensure that previous loading processes
in Matlab work unproblematically. The letter is followed by a date and another letter "X", which will
always be an A and is provided by the IOW PowerLogger. The CTD-files contain the majority of the
measured data. Like shown in Listing 2.1, the metadata is registered to begin with an @ symbol. In
contrast, the payload begins with a predefined string and a comma as separator. It offers information
about date, time, seconds, milliseconds, battery voltage, pressure, temperature and conductivity. In ad-
dition, there are further variables like pH-value which are considered to be non-essentiell for the Matlab
analysis. Moreover, it can happen, that some values appear to be redundant because they are measured
doubly. In this case, they are reduced to one record within the analysis.

. . .
@NAME,DATE,TIME,FRAC,SEC, VBatt , Press ,Temp,Cond . . .
@UNIT,YY−MM−DD,HH:MM: SS ,MS,RUNSEC,V, dBar ,Ã¸C ,mS/cm . . .
. . .
@METAEND
|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
@DATASTART "2015−05−13" "18 :01 :19"
$PSDA1,2015 −05 −13 ,18 :01 :19 ,093 ,10 ,33295 ,62089 .000 ,49171 .000 ,15590 .000 ,14307 .000 . . .
$PSDA1,2015 −05 −13 ,18 :01 :20 ,544 ,11 ,33301 ,62089 .000 ,49093 .000 ,15590 .000 ,14305 .000 . . .
$PSDA1,2015 −05 −13 ,18 :01 :21 ,015 ,11 ,33303 ,62093 .000 ,49067 .000 ,15589 .000 ,14302 .000 . . .
. . .

Listing 2.1: Extract of an exemplary CTD-File

The TriOS-files are saved in the Pxddhhmm.X.txt format. The "P" originates from ProPS which is the
name of the sensor. The next letter "x" can either be a C for calibration or an M for measurement. This is
because the spectral data meter measures either with light turned off (C) to investigate the dark current
of certain photo detector canals or with light turned on (M). In actual fact, there is no difference between
C and M, since the light technically is turned on all the time. Finally, the first two letters are followed
by a date and another letter "X" which is defined as an consecutively counting index variable provided
by the PowerLogger. As you can see in Listing 2.2, the data consists of several segments separated by
identifiers in square brackets. It contains metadata such as spectrum and attributes as well as payload
that splits into four columns. The first column shows the pixel number of the used photo diode. The
second column is defined as a 16-bit value being proportional to the measured illuminance. The last two
columns are not relevant and represent a mistake counter and the mistake status.

. . .
[DATA]
0 9 0 0
1 1357 0 0
2 1327 0 0
3 1330 0 0
. . .

Listing 2.2: Extract of an exemplary TriOS-File

The names of the Nortek-files are structured in the NOyymmdd.txt format where "NO" represents an
acronym for the fabricator Nortek followed by the date. As Listing 2.3 illustrates, the files contain no
metadata beside date and time and the measured information is encoded as hexadecimal values. Thus,
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2. Background

it is impossible to read from the files before the data is converted into human-readable values.

2015−04−21 06 : 47 : 30 A521C400263610160201000000007300F23AA400F7F . . .
2015−04−21 06 : 47 : 32 A521C400263710160201000000007300F23A7C00F9F . . .
2015−04−21 06 : 47 : 33 A521C400263810160201000000007300F13A9B00EDF . . .
. . .

Listing 2.3: Extract of an exemplary Nortek-File

Additionally and not generated automatically by the PowerLogger, there are metadata-files generated
manually by the researches. There is one XML-file per deployment containing data about deployment-
specific calibration. It is saved in as a deployment_xx.xml where "xx" represents the unique deployment
number. In sum, the metadata file contains data about a wide range different sensors including FracSec
- a sensor for time, PressureSensor - a sensor for subaqueous pressure, TempSensor - a sensor for temper-
ature and ConductivitySensor - a sensor for conductivity. Listing 2.4 exemplarily shows the calibration
data for the conductivity sensor.

<Conduct iv i tySensor>
<SerialNumberCTD>468</SerialNumberCTD>
<ChannelNumber>10</ChannelNumber>
<SerialNumberSensor>4681</SerialNumberSensor>
<Cal ibrat ionDate>16 .07 . 2014</Cal ibrat ionDate>
<A0>−8.86499939e−002</A0>
<A1>1.01438668 e−003</A1>
<A2>9.35514578 e−012</A2>
<A3>1.10249781 e−016</A3>

</Conduct iv i tySensor>

Listing 2.4: Calibrated Metadata for Measuring Conductivity

In terms of sensor metadata, each XML-file includes the serial number of the CTD-meter, the channel
number, the serial number of the sensor and the calibration date. Moreover, it does contain four different
calibration values (A0, A1, A2, A3) and a polynomial coefficient x that is defined as a positive integer
between zero and 65535 because actual measures are digitized by a 16-bit converter. The sensors are using
those values for calculating SI-units by polynomial evaluation which depends on the calibrated values.
The SI-units are then added to the CTD-file. By slighty pre-empting the Matlab scripts described
in section 2.3, the following equation illustrates how conductivity C can be computed by using the
polynomial coefficient and the generated calibration values.

C = A0 + x ∗ (A1 + x ∗ (A2 + x ∗A3)))

2.3. Performed Matlab-Analysis

To process the data saved in the three files, the IOW uses Matlab. It was developed by The MathWorks
Incorporation in 1984 and is considered to be a mathematical programming language used for data ana-
lytics. [Ord13] It is not database-supported and is optimized for solving engineering and scientific problems
on a file-based level. According to the documentation it is used for machine learning signal processing, im-
age processing, computer vision, communications, computational finance, control design or other and the
key features split into high-level language for scientific and engineering computing, desktop environment
tuned for iterative exploration, graphics for visualizing data, apps for curve fitting, data classification,
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2. Background

signal analysis or control system tuning, add-on toolboxes for a wide range of engineering and scientific
applications, tools for building applications with custom user interfaces, royalty-free deployment options
for sharing Matlab programs with end users and interfaces to a wide range of other languages including
C/C++, Java, .NET, Python, SQL, Hadoop and Microsoft Excel. [Mat19]

Regarding the GODESS, Matlab is used for several purposes but mainly for processing and visualizing
the data. The aim is to generate graphic profiles showing correlations between two or more parameters
or time-dependencies of the measured variables. Thus, researches investigate the development of certain
parameters over time. [FWW+10] The objectives are to detect divergences between different profiles, ab-
normalities or to check the data for data leaps in order to optimize the instrument’s calibration or to find
conspicuous patterns and trends. For all analysis types there are used three Matlab scripts. Thereby, most
of the analysis is performed by one single script containing 1355 lines of code. It is separated into several
sections which can be executed independently or as one unit. This illustration following the original Mat-
lab script code shows which steps are generally involved in the process:

0. Read Metadata

1. Read raw CTD-Files

2. Merge Split Casts

3. Merge Files

4. Interpolation

5. Read Nortek-Files

6. Process Nortek Data

7. Read Seabird Data

8. Comparison of CTD Data

9. Read TriOS-Files

10. Process TriOS Data

11. Plot Timeline

12. Deconvolution

As a first step (Section 1), the metadata is loaded which basically involves getting the meta-information
from the XML-files. Secondly (Section 2), also the raw CTD-files are read in. In a next step (Section 3),
split casts are merged. Since some casts can be split over two different days the data has to be modified.
This includes resorting the data if a profile exceeds the current date. Next, the different CTD-files are
merged (Section 3). The data first gets unified and converted from their saved data format. Thereby,
sensor data gets converted into SI-units using the coefficients from the XML-file. As a result of this
section, the information from all files is merged together. Subsequently, the CTD data is interpolated to
sigma coordinates and thereby to a constant pressure axis (Section 4). Following this, the data is plotted
for the first time.

As a next step (Section 5), the Nortek-files are loaded and then processed. Thereby, the Nortek data
is sorted and inserted into the CTD data (Section 6). The next step (Section 7) includes loading data
that is not gathered by the sampling station. In this section data from the Seabird is read in which
is information gathered by a research ship that is saved as an CNV-file. After that, CTD data gath-
ered from the Ship is compared with the CTD data measured by the GODESS’ sensors (Section 8).
Finally, the TriOS-files are loaded and it comes to plotting the data for a second time in the next stage

7



2. Background

(Section 9). Firstly, the data is interpolated again to constant pressure axis, then it is plotted (Section
10). Consequently, a plot timeline can be visualized involving data from several deployments (Section 11).
As a last step (Section 12), the slow sensor data such as data about oxygen and pH-value is deconvoluted.

Figure 2 illustrates a typical output produced by the second last section of the script. It shows the
correlation between measured temperature T and sea depth as a function of time for multiple deploy-
ments. Thereby, the temperature is measured in degrees Celsius and the depth is measured in meters.
The right scale of the plot shows a colored spectrum from warm red to cold blue to illustrate the differ-
ences in temperature. Generally, six deployments are involved. By plotting such graphs, the researchers
hope to detect some trends or anomalies inside the data. Looking at this graph for example, we clearly
see some anomalies between August and December at a depth between 30 and 60 meters. Furthermore,
the plot demonstrates that the data is not measured steadily, since there are some gaps between the
different sub-plots. Furthermore, there are white spaces inside some graph sections. This indicates that
at some point for some reason data could not be collected. Hence, there can be possibly some leaps inside
the data of a deployment.

Figure 2.: Exemplary Plot across multiple Deployments (Temperature) [Pri19]

There are two additional Matlab scripts used for calculating practical and absolute salinity. Together,
they contain further 283 lines of codes - 194 lines for computing practical salinity and 79 lines for com-
puting absolute salinity. Whereas practical salinity is calculated directly from the conductivity of the sea
water, absolute salinity is based on the density of the sea water. Thereby, absolute salinity is defined as
the mass fraction of dissolved material in sea water [ISL10] Each of both salinity scripts relies on a certain
toolbox from the Matlab universe.

The practical salinity S(C, T, p) is dependent from conductivity C, temperature T and pressure p and
is calculated using the toolbox gsw_SP_from_C(C, T, p). This toolbox basically uses the so called
PSS-78 (Practical Salinity Scale) algorithm developed in 1978 and later extended by Kenneth D. Hill in
1986. [HDW86] The PSS-78 algrithm is only valid in the range of 2 < SP < 42. If the PSS-78 algorithm
produces practical salinity less than two, the practical salinity needs to be recalculated with a modified
formula developed by Hill to ensure that it is exactly consistent. [MB19] Subsequently, absolute salinity
SA(S, lon, lat) is calculated based on practical salinity S, longitude lon and latitude lat using the Matlab
toolbox gsw_SA_from_SP_Baltic(S, lon, lat). Since practical salinity is non-negative by definition,
this function changes any negative input values to zero. [DJB19] In addition, this program is highly specific
and will only produce absolute salinity values for the Baltic Sea. Figure 3 demonstrates how salinity can
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later be plotted. As an example, it shows the correlation between absolute salinity and density ρ as a
function of time for multiple deployments between 2015 and 2016. Similarly to the temperature graph,
there are some anomalies and leaps inside the data.

Figure 3.: Exemplary Plot across multiple Deployments (Salinity) [Pri19]

Analyzing the Matlab scripts in terms of its content, multiple functions and operations can be identified.
Surely, there are basic operations like reading, writing, updating and exporting data of different types.
Furthermore, there can be found a wide range of functionalities. Particularly in the main script, there
are various complex case differentiations and iterations as well as sort and merge algorithms continuously
used for processing and analyzing the data. Since Matlab is developed mainly for dealing with matrices,
the analysis contains various vector operations including element wise and matrix multiplication. As
mentioned before, polynomial evaluation is used for converting parameters from their hexadecimal values
into human-readable data. Furthermore, the researchers somehow query ranges while searching for leaps
and abnormalities. On top of that, some complex statistical techniques are applied. For instance, to
compare different CTD casts, variance analysis is used. Moreover and in terms of calculating intensity
counts, the researchers even rely on multiple linear regression. Another key functionality is the plotting
of various types of graphs involving data from two or more parameters.

For calculating practical and absolute salinity there are also used several consecutive functions. The
estimation of PSS involves case differentiation as well as matrix multiplication, but mainly relies on
complex polynomial functions. Absolute salinity then is calculated using a simple case differentiation
involving highly complex matrix operations and interpolations.

In summary, ten following functionalities can be identified. This involves complex case differentia-
tion, iteration, sorting, merging, matrix multiplication, range querying, polynomial evaluation, vari-
ance analysis, multiple linear regression and plotting graphs. Together, they constitute a wide range of
functionalities to be potentially transformed to database-supported evaluations. As some users priori-
tize SQL-based systems for performing data analytics and others prefer NoSQL databases, this thesis
will transform some of the listed functionalities to both SQL and NoSQL platforms. In order to com-
prehend the differences between these platforms and to find potential database systems meeting the
requirements of the GODESS data, the next chapter will explain how these platforms are character-
ized.
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Since statistical, numerical and mathematical languages purposely provide proper analytical performance
when it comes to specially tailored applications [Ord13] but in such a case lack in terms of storage usage,
multi-user operations, data provenance, change management and privacy aspects, it seems obvious that
an increasing number of companies and researchers rely on database-supported solutions. As mentioned
earlier in this paper, the IOW likewise considers a digital change. Therefore, the following chapter
provides a broad overview about intended database properties, relational database systems such as SQL-
based systems and the current development of NoSQL languages. Furthermore, features, advantages and
disadvantages as well as application areas for SQL and NoSQL systems will be discussed. Thereby, the
discussion starts by describing two of the most common principles for database properties in section 3.1.
After that, section 3.2 will explore how SQL-based database systems are characterized. Finally, sec-
tion 3.3 will differentiate from SQL-based systems by depicting the characteristics of NoSQL database
systems.

3.1. ACID vs. BASE

Although SQL and NoSQL databases strongly differ from each other, both are considered to be database
management systems. A database management system thereby will be defined as any system that stores
and administers data and performs transactions to process this data. There are several different types of
database systems, some relying on relations or tables and some not. In the scope of the set goals, this
thesis will focus on the differences between SQL-based databases and NoSQL systems. No matter what
type of database is considered, it is always important to find a proper conceptual representation of the
data structures that are required by a database. This representation is called data model and the data
structures include data objects, the associations between these objects and the rules which govern those
operations. [KR13] Dependent on the purpose, a database management system can have different designs
and different designs require individual properties. Two of the most common principles defining those
properties are ACID and BASE.

CAP-Theorem

Whereas SQL-databases rely on ACID principles, most NoSQL solutions apply BASE principles. It is
important to notice that both principles are based on the so called CAP-Theorem which is illustrated in
Figure 4. This theorem basically suggests that there are three properties a database potentially can fufill -
Consistency, Availability and Partition tolerance . A database is considered to work consistently, if every
read receives the most recent write or an error. [Bre00] This implies that the data is always the same in ev-
ery replication on every server. [Web10] Availability is satisfied, if every request receives a response without
having the guarantee that it contains the most recent write. [Bre00] Thus, data must always be accessi-
ble. [Web10] The last property, partition tolerance, is fulfilled, if the system continues to operate despite
an arbirary number of messages being dropped by the network between nodes. [Bre00] Hence, the database
needs to work fine despite network and machine failures. [Web10]
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Figure 4.: CAP-Theorem

The CAP-theorem postulates that you can have at most two of these properties for any shared data
system. [Bre00]. Accordingly, only two of the three different aspects of scaling out can be achieved fully
at the same time. [MH13] Following this assumption you can either fulfill availability and consistency at
the cost of partition tolerance, consistency and partition tolerance at the cost of availability or partition
tolerance and availability at the cost of consistency.

ACID

As mentioned before, both ACID and BASE are derived from the CAP-theorem. ACID is mainly used
as a set of rules for relational database transactions to ensure consistency. [AB13] A transaction can be
described as an operation processing data that is started by release and ended by commit. [MH13] Most
of classical database systems are based on transactions to guarantee the integrity of data. ACID is
an acronym for Atomicity, Consistency, Isolation and Durability. Atomicity means that a transac-
tion is completed when all operations are completed and that otherwise a rollback is performed. [AB13]

In terms of consistency, the ACID principles imply that the database ensures integrity of data before
and after each transaction. [AB13] Furthermore, a database relying on ACID principles is isolated, if all
transactions are independent and cannot affect each other. [AB13] Finally, Durability is fulfilled, if the
system guarantees that the results survive any subsequent malfunctions once a transaction is commit-
ted. [HR83].

BASE

The BASE principles still follow the CAP-theorem, but prioritize different properties. For a growing
number of applications and use cases, availability and partition tolerance are becoming more impor-
tant than strict consistency which is preferred by ACID proponents. [SK11] Even in distributed systems,
two of the three qualities must be chosen. [AB13] Those systems that obviously need to ensure partition
tolerance over several clusters, prefer availability over consistency. [SK11] Thus, BASE stands for Basic
Available, Soft-state and Eventually consistent. It is intended that the consistency after a transaction
is not a solid state anymore, but a soft state instead and it shall be reached not right after finishing
the transaction, but rather sometime. [Web10] Hence, BASE forfeits the ACID properties of consistency
and isolation in favor of availability, a graceful degradation and a faster performance. [SK11] Most NoSQL
databases have loosened up the requirements on consistency [MH13] in order to achieve almost perma-
nent availability. [Web10] This includes constraints on the classical data model to enable better partition
schemata. [MH13]

11



3. State of the Art

3.2. SQL-Database-Systems

The main purpose for constructing databases is to query the valuable data stored inside. Therefore,
query languages are used which can be specified as computer languages used to manipulate data inside
a database. [NPP13] Since 1970 data stores have been relying on the traditional calculus of Relational
Database Management Systems (RDBMS) providing comprehensive ad hoc querying facilities by Struc-
tured Query Language (SQL). [Cod70] Although there are exceptions, relational databases can be generally
considered to be one single SQL DBMS product. [VFKV16] While implementing RDBMS a lot of attention
is paid on developing conceptual, logical and physical data models. [KR13] The data is stored in tables, so
called relations, and the values are stored row-wise. [Ord13] The model is mainly dedicated to structured
data and to handle transactions respecting the ACID properties. [OBLB15] Thereby, SQL represents the
most commonly used query language by relational databases. [NPP13] A typical example of a SQL query
will be illustrated in section 4.2.

Features and Benefits

Above all, SQL databases ensure data integrity and transaction consistency. [OBLB15] Moreover, it is possi-
ble to highlight relationships between different data sets and even relationships between a single metadata
set and several other databases. [Möl16] They offer advanced functionality to manage, update and query
data [OBLB15] and can efficiently process transactions and SQL queries on data. [Ord13] Hence, RDBMS
are a good fit for small but frequent read and write transactions and for large batch transaction with
rare write accesses. [TB11] Furthermore, SQL queries allow processing the data in-situ as well as relational
query optimization including forcing hash-joins, clustered storage for aggregation, denormalization for
avoiding joins, pushing aggregations before joins for compressing tables and balancing row distribution
among the processing units. [Ord13] On top of that, privacy issues can be avoided or strongly reduced by
using techniques such as data control and isolation. [Möl16]

Additionally, they can be vertically scaled very easily which refers to increasing the capacity and the
performance inside a single server. [OBLB15] This kind of scalability is easier to achieve than horizontal
scalability [KR13] which is increased by adding additional machines or servers. Even though there ex-
ists parallel RDBMS for data warehousing and large-scale analytics and some databases have achieved a
certain level of integration between SQL and parallel operations [Ord13], features like sharding and MapRe-
duce were not originally created for those systems. [OBLB15] Nevertheless, they perform well in parallel
querying and Online Transactional Processing (OLTP). [Mom01] Nowadays, it is even possible to perform
data mining on RDBMS, since most processing on large tables can be done inside the database and only
partial processing needs to be done on smaller tables exported to an external mathematical library or
statistical program. [Ord13] In addition, it can be assumed that many companies appreciate that relational
databases offer commercial support and maintaining. [OBLB15]

Another feature is object-relational extension asUser-Defined Function (UDF) that does not increase
the computation power, but makes programming easier and many optimizations feasible by allowing push-
ing more mathematical processing into main memory. [Ord13]. Users can use UDFs to implement individual
functions using either SQL or another programming language. All in all, SQL-based databases ensure
more reliability in comparison to NoSQL database systems. [OBLB15] Although this property makes them
suitable for a wide range of applications requiring strong consistency such as management of financial
transactions, there are some lacks that unintentionally formed a basis for the simultaneous development
of NoSQL systems.
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Drawbacks

SQL systems were almost in monopoly position over the last decades and, on top of that, they still repre-
sent the widest used and most popular database solutions. [Ord13] Despite the broad variety of mentioned
key-features and benefits, there are some drawbacks on RDBMS. Firstly, relational databases primarily
perform on single servers. [SK11] Although they scale well vertically, they have issues with scaling out
horizontally. [OBLB15] This makes them difficult to expand [HHLD11] and they lack in performance espe-
cially for large data sets. [KR13] They turned out to be less efficient when dealing with big data [OBLB15]

and therefore cannot compete with parallel systems especially designed for executing MapReduce (see
section 3.3 for explanation) to analyze, for instance, web-scale text data. [Ord13] Additionally, they are not
suitable for heavy read and write workloads. [TB11]

Due to their rigid relational schema design, it is inconceivable that tuples have different attributes. [Web10]

Consequently, they lack in dealing with unstructured data that needs dynamic schemata. [KR13] Further-
more, change management can be very difficult to handle and the row storage model is considered to be
less rapid than column-oriented stores. [OBLB15] In addition, there are only a few RDBMS that are open-
source like for instance PostgreSQL or MySQL. In concerns of Online Analytical Processing (OLAP),
there can be the problem of integrating statistical and machine learning methods, since RDBMS lack of
the comprehensive set of techniques already available in mathematical languages like Matlab, statistical
languages like R or numerical languages like LAPACK. [Ord13] Subsequently, it is difficult for users and
researchers to incorporate new algorithms or change existing ones and data structures, incremental com-
putations and matrix operations are tricky to program. [OBLB15] As mentioned by Ordonez, it is quite
common for users to export data sets to a statistical software or a parallel system. [Ord13] He elaborates on
this by mentioning that most of the querying is done inside the RDBMS, but the computation of statistical
models and pattern search is more commonly performed outside.

3.3. NoSQL-Database-Systems

NoSQL databases have put doubts on the usefulness of data models trying to eliminate the need for data
modelling. [KR13] Advocates believe that the current "One size fits it all"-thinking is wrong and therefore
other systems are required. [SK11] The term NoSQL means "Not only SQL" and was first introduced by
Carlo Strozzi in 1998 for his open source relational database that did not offer an SQL interface as a
general hypernym for relational databases that do not use SQL. [Str98] In 2009, the term was reintroduced
by Eric Evans at the event "no:sql(east)" [KR13] which was a conference about non-relational databases in
San Francisco. [OBLB15] Indeed, some experts are using the term with the meaning of a completely non-
relational system and there even exist some middle-ware appliances between relational and non-relational
databases. [TB11]

The Movement of NoSQL

According to Strauch, the search for alternatives can be explained by two trends: (1) The continuous
growth of data volumes to be stored and (2) The growing need to process larger amounts of data in shorter
time. [SK11] The main reason for this development is that Web 2.0 increased the use of data quantity stored
in databases all over the world [AB13], since users were not restricted anymore to only read information,
but furthermore contributed to the online data pool by writing information inside the databases. Addi-
tionally, the cost of posting and exchanging information became cheaper after 1990 due to the growing
popularity of the Hypertext Transfer Protocol (HTTP) which led to a flood of information on the inter-
net. [KR13] Another factor was the proliferation of clouds, especially in the sense of Database as a Service
(DBaaS). [OBLB15] DBaaS can be defined as a set of tools providing final users with seamless mechanisms
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for creating, sorting, accessing and managing their proper databases on remote servers which makes
them the most appropriate computational data framework for implementing big data repositories. [CSD11]

The major requirements of cloud computing split into high until almost ultimate scalability and a low
administration overhead. [SK11] The excessive generation of information by modern applications, cloud
computing and smart devices [VFKV16] finally led to a phenomenon called Big Data.

Das and Kumar provide an example that perfectly describes this evolution. While it took from the dawn
of the civilization to 2003 to create five exabytes of information, we now create the same volume in just
two days. [DK13] The Big Data characteristics split into four challenges:

• Data Velocity

• Data Variety

• Data Volume

• Data Veracity

Data velocity refers to rapidly and continuously updated data streams from different sources and loca-
tions. [VFKV16] Thus, data is generated in real-time with demands for usable information to be served up
as needed. [DK13] Moreover, structured, semi-structured and even unstructured data must be stored which
leads to a massive data variety. [VFKV16] On top of that, the data is collected from new sources that have
not been mined for information in the past. [DK13] Data volume means that it became common to deal
with a huge number of data sets with sized of several terabytes or petabytes. [VFKV16] Particularly, the
growth of unstructured data contributes to this issue. This data is strongly heterogeneous, variable in
nature, comes in many forms and is growing faster than structured data. [DK13] Finally, data veracity,
which was classified as an additional challenge just a little while ago, states that data quality has a
massive impact on how successfully Big Data can be used. [VFKV16]

NoSQL databases arose alongside major intenet companies such as Google, Amazon and Facebook
which had challanges in dealing with these huge quantities of unstructured data with conventional
RDBMS. [MH13] The first NoSQL database was Google’s BigTable which was introduced in 2006. Only
one year later, Amazon followed by releasing their database called Dynamo. [KR13] Another instance of the
most significant application scenarios where Big Data arise is scientific computing. [CSD11] All together,
there is a bunch of new priorities being inevitable for those companies and the scientific world. Firstly,
there is the importance of information promptness. [AB13] Secondly, there is a need for technologies requir-
ing only low administration overhead and high scalability. [OBLB15] Moreover, there is an increased need
for real-time analysis and most information saved in companies’ repositories is stored as unstructured
data models. [DK13] Thus, new techniques were developed allowing Google to index the web, Facebook
to build social graphs and Netflix to recommend movies. [Los13] Nowadays, there are over 120 of different
NoSQL dabases [TB11] and many universities have started teaching about these data stores as a part of
their curriculum. [KR13]

Features

NoSQL databases differ from SQL systems in terms of features and properties. According to Weber [Web10],
the NoSQL archive defines them as non-relational, distributed, open-source and horizontally scalable.
Thereby non-relational means that the database is not based on a relational model anymore and there-
fore has no relations or tables. Distribution implies that the data is stored on and managed by different
machines or servers. Moreover, a database is considered to be open-source, if everyone can look into
the source code for free or even change or compile it. Finally, he elaborates on horizontal scalability
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which can be explained as a positive, nearly linear correlation between the number of servers you add
to the distributed system and the performance level of the whole cluster. Another definition provided
by Tudorica and Bucur describes NoSQL databases as database systems which are distributed, may not
require fixed schemas, usually avoid join operations, typically scales horizontally, does not expose a SQL
interface and may be open-source. Weber also mentions that there is a selection of properties that can
be potentially added to this quartet [Web10], but since no final definition of such database systems is yet
applied, the prior illustrated definitions deliver a sufficient imagination.

Although NoSQL databases are classified within the spectrum from ACID to BASE [Web10], most sys-
tems respect BASE properties. [OBLB15] Not least because implementing ACID into distributed systems
is not trivial, since the major problem is to ensure consistency of data sets being distributed over sev-
eral servers. [Web10] Due to the flexible architecture of distributed systems [OBLB15], the schema is not
fixed [VFKV16] and databases are not primarily built on tables anymore. [MH13] Furthermore, the data is
processed massively parallel across a large number of commodity servers. [MH13] Thereby, the same file is
stored on different servers as instances of a resource which is commonly known as replication. [Web10] Most
NoSQL database systems even provide sharding which involves cutting up the database into multiple ta-
bles to run them on large clusters or grids. [SK11] Since each NoSQL database has developed its unique way
to manage, extract and query data [OBLB15], they do not use SQL for data manipulation. [MH13] Hence,
querying this new generation of databases is strongly data-model specific as each database was developed
for a specific purpose and therefore relies on an individual data-model. [KR13] Apart from that, distinction
between data definition language and data manipulation language like in SQL systems does not exist in
NoSQL databases. [VFKV16]

The input data is usually large and the computations sometimes have to be distributed across hundreds
or thousands of machines in order to finish the work in a reasonable amount of time. [DG04] Therefore,
most NoSQL databases provide parallel processing relying on a principle that was already mentioned
earlier and is called MapReduce. This technique automatically distributes analytic operations across a
cluster of computers and can work on top of a distributed file system providing great flexibility, efficiency,
expandability and low cost. [Ord13] The underlying runtime system automatically parallelizes the compu-
tations, schedules inter-machine communication and even handles machine failures. [DG04] Thereby the
programmer specifies two basic functions: Map() and Reduce(). Figure 5 illustrates how MapReduce
works. Basically, Map() partitions computational tasks into smaller computational tasks and assigns
them to then appropriate key-value-pairs. [CSD11] Written by the user, it takes a pair as input [DG04] These
smaller tasks are executed efficiently by exploiting parallelism. [CSD11] In a next step, the MapReduce li-
brary groups together all intermediate values associated with the same intermediate key and passes them
to the reduce function. [DG04] Thus, the final result of Map() is obtained via the Reduce() operation that
combines all the values sharing the same key. [CSD11] Finally, Reduce() which is also written by the user
accepts an intermediate key and a set of values referring to this key and merges the values together. [DG04]

Figure 5.: Illustration of a MapReduce Process
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Benefits

Overcoming the restrictions of previous SQL-based systems, NoSQL offer a wide variety of advantages.
Firstly, there is a broad range of models to choose from [NPP13] which delivers a proper solution for every
specific case of application. Hence, they are considered to be serious competitors due mainly to their
data model flexibility [FC13] which allows to store data without pre-defining a schema. [OBLB15]. Often,
a database administrator is not required [NPP13] and NoSQL systems turned out being able to resolve
the storage problems of massively unstructured data sets. [OBLB15] Moreover, such systems provide easy
change management [OBLB15], since it is possible to change the data model at any time. [OBLB15]. They
require lower all around management and have lower computational costs. [HHLD11] Most of them are
open-source [SK11] which makes them easily affordable and creates a high level of transparency. As a
consequence, users do not need to case about licensing and commercial support issues and can simply
service themselves. Furthermore, NoSQL systems provide a significantly higher data throughput than
traditional DBMS [SK11] and offer high concurrency processing of reading and writing operations with low
latency. [HHLD11]

Beside these factors horizontal scalability remains the main advantage of NoSQL services. Large amounts
of computers can be connected creating a cluster and its performance exceeds a single node unit equipped
with additional processors and memory. [AB13] This kind of scalability is cheaper to achieve [OBLB15], since
it is more inexpensive to have a large amount of computers with fewer resources than buliding a su-
percomputer. [AB13] As one consequence of scaling out horizontally, distributed NoSQL systems do not
rely on highly available hardware. [SK11] In addition, Oussous et al. [OBLB15] mention that sharding allows
to balance the load and to ensure parallel storage as well as processing of data.They expand on this
by stating that sharding creates valuable options to add or remove servers from the data layer without
affecting the application performance which makes them suitable for handling parallel computations and
mathematical equations on large distributed data sets. Moreover, most databases have automated data
replication for ensuring a higher fault-tolerance. Hence, the community agrees that processing the data
where it resides is faster and more efficient than first transporting it to a centralized system. [DK13]

All in all, NoSQL databases can be specialized enormously well and offer a big number of features for
almost every application area. For instance, they seem to be the better option for business situations re-
quiring simplicity, adaptability, high performance analytics and distributed scalability over large amounts
of data. [VFKV16] Thus, Moniruzzaman and Hossain [MH13] state that they are suited to exploratory and
predictive analytics on semi-structured data. They explore that the relatively inexpensive costs for large
volume data storage provide adequate conditions for storing small-packet historical data gathered from
logs, call-data records, meter readings and ticker snapshots. Furthermore, they elaborate on other appli-
cations by mentioning that the distributed framework makes them ideal for massive batch data processing
including aggregations, filtering, sorting and programmatic or statistical algorithmic crunching.

Apart from that, NoSQL languages allow polyglot persistence which means that different classes of
NoSQL databases can be used simultaneously within one application. [KR13] Another aspect is that some
NoSQL DBaaS providers offer so called ETL-style data transformation. [MH13] Hence, they apply ad-
vanced extraction-transformation-loading (ETL) processes that transform raw data to somewhat struc-
tured information. [CSD11]. Additionally, NoSQL databases are recommended when mobile applications
manage huge amounts of data on a central server. Apart from mobile phones, NoSQL database sys-
tems come in many forms and schemas, are flexible and therefore form a basis for many applications.
As the community suggests, this mainly includes big data analytics and parallel processing of large-
scale data generated either by small devices like logs and sensors or web-applications such as social
networks.
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Drawbacks

Critics claim that NoSQL is only a hype and some people see such systems as being nothing new, since
similar attempts like object databases have been around for decades. [SK11] Indeed, there are some down-
sides on these schema free designs. First of all, most NoSQL databases are young and immature [HHLD11]

and there is a lack of familiarity and limited expertise. [VFKV16] There is no standard query and manipula-
tion language or a standard interface. [OBLB15] Therefore, researchers usually must be a skilled statistician
working in tandem with a skilled programmer [MH13] and even data scientists face the challenge to under-
stand the query language of each NoSQL database. [OBLB15] Therefore, it is difficult for the user to switch
from one NoSQL database provider to another. [NPP13] Additionally, there exist some security issues, since
security is not a subject of priority anymore. Thus, many NoSQL systems do not secure clients properly
and server communications do not provide authentication nor auditing mechanisms, because encryption
of very large unstructured data sources is difficult to achieve. [OBLB15] This limits the privacy of users or
people that are potentially involved analysis targets.

Apart from privacy issues, there are two additional limitations regarding the user-friendliness. Firstly,
there is no commercial support which can scare business people in the case of failures with nobody to
blame for. [SK11] Secondly, NoSQL databases can be strongly challenging to install and maintain. [VFKV16]

Although some providers meanwhile offer install wizards, the majority of NoSQL databases require com-
plex server setups. Other drawbacks of NoSQL systems are that they lack in terms of performance when
it comes to complex queries and joins are difficult to achieve. [OBLB15] It can be quite complicated to
export data from distributed to undistributed systems [VFKV16] and they lack in dealing with transac-
tions. [HHLD11] Moreover, many statistical functions are too holistic to be distributed over a MapReduce
system and MapReduce requires expensive effort and manually programming. Finally, it can surely be
an issue that NoSQL databases scale up horizontally at the cost of consistency. [VFKV16] For applica-
tions requiring high reliability such as those dealing with financial transactions, NoSQL is only little
suitable.

3.4. Sub-Categories of NoSQL Database-Systems

Due to the flexible schema design, there is no standard NoSQL model. Rather we find a broad diversity
of different systems that are difficult to cover in a proper classification. Therefore, the community
suggests different categorizations and products which are in the same category in one taxonomy are
listed in separate categories in another one. [TB11] For analyzing which type of NoSQL system could
meet the requirements of the GODESS data, it is important to present the different kinds of databases
available. Therefore, this paper focuses on the most commonly used classification which separates NoSQL
systems into four categories. Thereby, it is important to notice that some databases belong to more than
one category. [Web10] Referring this categorization, NoSQL databases are classified in the following sub-
categories:

• Key-Value Stores

• Document Stores

• Column Stores

• Graph Databases

Next to the mentioned core databases, there are other NoSQL databases which are not considered in this
thesis. This includes object-oriented databases, grid and cloud solutions, XML-databases and multi-value
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databases. According to Tudorica and Bucur [TB11] they are also called soft NoSQL systems, since most
of them being older or newer systems which are not related to any Web 2.0 service but coincidentally
share the traits being described as NoSQL characteristics. The authors also mention that some of those
databases even offer strong ACID compliance and relational capabilities. Thus, they may be displaced
in a list of NoSQL categories.

Key-Value-Stores

Key-Value Stores can be visualized as relational databases having multiple rows and only two columns:
key and value. [NPP13] Actually, they rely on a simple data model without relations or structures [Web10]

and most databases are inspired by Amazon’s Dynamo. [KR13] Other popular examples are LinkedIn’s
Voldemort, Redis or Riak. They are schemaless and offer a simple API. [NPP13] Each database simply has
a key and a corresponding value together as one data set. [Web10] Thus, the data consists of two parts:
a string representing the key and the actual data value referring to this key. [NPP13] Obviously, the key
should be unique what is realized with hashes. [Web10] In contrast, the value is semantic [HHLD11] and can
be of different types like strings, integers, floats or byte arrays. [Web10] Together, key and value create a
key-value-pair [NPP13] which is why those databases are called key-value stores. Hence, items are stored
as alpha-numeric identifiers with the associated values in simple, standalone hash-tables. [MH13] Some
databases do not even care about the data type of the value. In this case, these inputs are called "Blobs"
which refers to an arbitrary binary object which the database does not need to interpret. [Web10]

Their simple data model allows the clients to put and request values per key by using a map or dic-
tionary. [SK11] Thus, values are queried according to the key specified. [NPP13] Key-value stores can handle
a very large number of records and they support high volumes of state changes per seconds with millions
of simultaneous users. [OBLB15] They do not provide any kind of traditional database capabilities which
makes it difficult to create custom views of the data. [NPP13] Consequently, users cannot access the data
by value which means that most types of selections are not possible and querying a key-value store for
extracting all records containing a particular set of values can be very expensive. [OBLB15] These stores
omitted rich ad-hoc querying and analytics features including join and aggregate functions [KR13] in order
to enable high concurrency, fast look-ups and mass data storage. [NPP13]

This makes them suitable to look-ups for simple or complex values in extremely large data sets [OBLB15]

and lightning-fast, highly scalable information retrieval of the values needed. [MH13] Additionally, they are
useful for storing the results of analytical algorithms. [OBLB15] Generally, they are adequate for applications
where the schema is prone to evolve. [KR13] This makes them applicable for user sessions and shopping
carts [NPP13] as well as for quick and efficient data management in distributed systems. [Web10] More-
over, key-value stores offer higher insert and read rates [VFKV16] and faster query execution times [KR13]

compared to traditional SQL databases.

Document Stores

Document Stores are considered to represent the next logical step from simple key-value stores to
slightly more complex and meaningful data structures. [SK11] Popular examples are MongoDB and Apache’s
CouchDB. Unlike key-value stores, the value column contains semi-structured data. [MH13] As the name
suggests, document databases use entire documents of different types as data sets. The documents are
encoded in a standard data format such as XML, JSON or Binary JSON (BSON). [Web10] They may
contain multiple key-value pairs, key-array pairs or even nested documents [OBLB15] and in contrast to
key-value stores, the database has to know which kind of document is saved. [Web10] Additionally, there
is no strict schema the documents have to conform. [SK11] Thus, document stores fulfill the properties of
a schemaless database. [VFKV16,NPP13]
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Thereby, only the attributes that are really used need to be specified and the user is able to directly
edit the data in the document on the server side [Web10] which would be impossible in concerns of key-
value stores. Each document is addressed by using a unique key which can be represented as a simple
string or a string that refers to an uniform resource identifier or a path. [NPP13] Moreover, each docu-
ment can contain different fields of any length [VFKV16] and may consists of similar as well as dissimilar
data. [NPP13] Apart from that, the documents can have arbitrary structures as well as attributes associ-
ated with them. [Web10] Furthermore, they can be grouped together in specific collections. Compared to
RDBMS, those collections refer to tables and documents to records. [KR13]

In contrast to key-value stores, both keys and values are fully searchable. [MH13] Thus unlike key-value
stores, document stores allow the user to search for data based on the content of the documents and clients
can launch queries either by keys, values and even examples, because the encoded documents contain
metadata objects as well. [OBLB15] The main advantage of storing data the way it is done in document
stores is that object structures of most programming languages can easily be mapped directly into this
representation without the necessity of translators. [KR13] To launch queries, users mostly can either rely
on a programming API or a query language. [OBLB15]

Obviously, document stores are an ideal fit for storing and managing documents of different types and
structures. They are able to store and manage Big Data sized collections of documents such as text
documents and mail messages or to save sparse data that would require extensive use of nulls in an
RDBMS. [MH13] Hence, document stores are suitable for applications where data has to be stored as
a document with special characteristics instead of uniform sized fields and they serve well, when the
domain model can be split and partitioned across multiple documents. [NPP13] This makes them an ad-
equate database for content management systems and blog applications [VFKV16] as well as for web ap-
plications, storage of semi-structured data or executing dynamic queries [KR13] and DBaaS providers in
general. [NPP13]

Column Stores

Column Stores are based on a hybrid approach relying on relational system’s declarative characteristics
and various key-value store schemata. [OBLB15] Most databases classified as column store are based on
Google’s BigTable. [KR13] BigTable has been a forerunner in this field, but soon there were developed
additional databases such as Apache’s Cassandra, Amazon’s SimpleDB, Hyptertable and HBase. Even
Amazon’s Dynamo can be classified as both key-value store and column database. Column stores save
and process data by columns instead of rows [SK11]. They have not subverted the traditional store-by-
row-principle of relational databases but come along with a different architecture. [OBLB15] They rely on
a structure where the data set with its attributes is not stored in one unit like in row-oriented databases
but one attribute of a set of data sets is stored in one unit. [Web10] The data is stored by column across
several blocks [Ord13] and each row can refer to a different number of columns that are stored. [VFKV16] In
addition, there is separate storage for the columns, each containing the primary key or address of each
record and the corresponding column value. [Ord13] Thus, column databases can be considered to represent
an extension of the key-value architecture with columns [OBLB15] accommodating multiple attributes per
key in a distributed data structure. [MH13]

The main advantage over row databases is that not all columns of those rows satisfying a certain condition
of a query need to be retrieved which prevents unnecessary disk Input/Output (I/O). [KR13] Thus, access
the values of the columns the way it is done in a column store reduces I/O of the system [HHLD11] and
even data can be aggregated rapidly with less I/O activity. [NPP13] This enables efficient queries such as
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projection of subsets of columns and allows huge numbers of stored columns as well as a sparse nature of
data and frequent changes in the schema. [Ord13] Finally, the architecture allows distributed data storage
and large-scale batch-oriented data processing like sorting, parsing, conversion and algorithmic crunch-
ing. [MH13]

Having its origin in Big Data analytics and business intelligence applications [SK11], column databases
are considered best suited for analytical purposes. [KR13] They are ideal to be used for data mining and
other analytical applications [SK11,NPP13] including exploratory and predictive analytics performed by
expert statisticians and programmers. [MH13] Additionally, they are not only promising in accelerating
statistical processing [Ord13], but can be also used in business intelligence to build high-performance ap-
plication relying on a shared-nothing massively parallel processing architecture. [SK11] Apart from that,
applications performing online analytical processing and data warehouses use columns stores, since the
needed aggregations can be done very quickly. [Web10]

Graph Databases

Graph Databases focus on relationships between data relying on the graph theory approach. [VFKV16]

Neo4j and Apache’s Giraph can be categorized as two popular examples of these data stores. Since SQL
database-systems and other NoSQL solutions like key-value stores are inefficient when it comes to highly
connected data [OBLB15], graph databases overcome this issue by storing the data in form of a graph
consisting of nodes and edges. Relationships between objects are illustrated as a connection between two
nodes and may be directed. [KR13] In this case, the edges of a directed graph are called arrows. [Web10]

Hence, vertices and edges are used to represent the connections between the data. [OBLB15] Thereby,
edges can have properties describing the relationship between two nodes. [Web10] Compared to an entity-
relationship model which forms the basis for constructing relational databases, a node corresponds to an
entity, a property of a node to an attribute and an edge to a relationship between entities. [KR13] For stor-
ing the context of vertices and edges, directed adjacency lists are used [Web10] where every node consists
of a direct pointer which points to the adjacent node. [KR13] Thus, graph databases have replaced rela-
tional tables with structured relational graphs of interconnected key-value pairings and, additionally, can
be considered to represent an object-oriented network of nodes similar to object-oriented databases. [MH13]

Despite the fact that many graph databases are ACID compliant [NPP13], these data stores do not re-
quire a pre-defined schema [OBLB15] and have the capability of storing huge amounts of interconnected,
semi-structured information. [KR13] They are easy to scale horizontally [Web10], allow to query multiple
relationships inside large data sets [OBLB15] and provide index free adjacency instead of performing in-
tensive join operations. [KR13] Thereby, queries are expressed as traversals which makes querying faster
compared to RDBMS. [NPP13] In addition, these traversals are considered to be cheaper and simpler than
traditional query methods. [Web10] Finally, graph databases provide fast all around performance [VFKV16],
offer rollback support [NPP13] and allow replications of vertices and edged as well as graph partition. [Web10]

Although this type of NoSQL database-system is not the most efficient solution for updating sets of
large volume data, they are suitable to store not only information about objects, but also about re-
lationships existing among them which makes them useful to store, access and analyze the nature for
relationships between two or more items. [OBLB15] This makes them ideal for social-networks, bioinfor-
matic applications, content management systems or cloud management services. [VFKV16] Moreover, they
are used in location-based services, shortest path applications and for efficient querying of data in a
network. [Web10] Additionally, graph databases are a proper solution for generating recommendations or
conducting forensic investigations. [MH13] Security and access control illustrate another field of application
for them. [NPP13]
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3.5. Summary

All in all, there are two major classes of database systems to distinguish - relational SQL-based databases
and non-relational NoSQL databases. Thereby, each database system relies on individual consistency
models and provides its individual features. Table 1 summarizes the main differences between SQL
and NoSQL database systems in concerns of selected criteria. Whereas relational database systems are
mostly ACID compliant, NoSQL databases rely on BASE properties in order to achieve higher availabil-
ity. Thereby, SQL databases use pre-defined and rigid schemata while NoSQL platforms provide dynamic
data models. Relational databases mainly use SQL as query language. In contrast, NoSQL databases do
not provide a standard query language, since each system provides its own individual querying language.

Moreover, NoSQL databases allow different attributes and try to avoid join-operations in order to achieve
higher availability. On top of that, there are more open-source databases in the NoSQL area than in the
world of SQL databases. Although, SQL databases provide commercial support and are friendlier to use
and to install, they require far more administration overhead. Additionally, SQL systems scale well in
the vertical direction and therefore perform better on single servers. On the contrary, NoSQL systems
scale better in the horizontal direction and perform better in a distributed node system. RDBMS per-
form better in terms of OLTP-operations and meanwhile include a growing variety of OLAP-operations,
as well. NoSQL databases seem to perform better in automated sharding and MapReduce, although
some SQL databases already started to include these parallel processing techniques. Furthermore, there
are some RDBMSs relying on distribution and parallel processing since decades and therefore have inte-
grated parallel processing in a more generally manner than NoSQL systems that are providing sharding
and MapReduce.

SQL NoSQL

Data Model Pre-Defined, Rigid & Dynamic, Free &
Relational Schema Non-Relational Schema

Age Multiple Decades Few Years
Dominant Consistency Model ACID BASE

CAP-Priority Consistency Availability

Query Language (QL) SQL as Standard QL No Standard QL
(Multiple QLs)

Preferred Distribution Single Node Cluster of Nodes
Different Attributes Not Allowed Allowed

Join-Operations Allowed Avoided
Open-Source Few Databases Most Databases
Installation Simple Complex

Administration required not required
Commercial Support YES NO

Comprehensibility High User-Friendliness Requires Expertise
Risk of Security Issues Low Moderate

Scalability Scales well vertically Scales well horizontally

Table 1.: Summary of Differences between SQL and NoSQL Database Systems

Regarding NoSQL databases, there are four different types of core NoSQL databases: key-value stores,
document stores, column stores and graph databases. They all have in common that they do not rely on a
pre-defined schema and that they scale well in the horizontal direction. The underlying architecture varies
from database to database which makes each database type suitable for different areas of applications.
Thereby, some databases overlap in terms of suitable employments or functionality. Surely, not all of
the four database types will be useful in concern of the data which is gathered by the IOW. Thus in
chapter 4, it will be highlighted which databases should be considered with regards to the GODESS data
characteristics and which not.
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The GODESS project delivers a vast amount of different semi-structured data stored in different files as
well as a wide range of functions to choose from. At the same time, the current state of research supplies
an enormous number of different database systems including SQL- and NoSQL-based applications to be
potentially selected for this approach. Since resources within the scope of this thesis are limited, it will be
necessary to scale down from this broad variety of data, functions and systems to a slightly smaller but
exemplary transformation model. Therefore, the following chapter explores the methodological design as
well as programming languages, sample functionalities, the reference model and data used for illustrating
the transformation.

4.1. General Procedure

This section will explore the general procedure. Therefore, Figure 6 shows the methodological design that
will be implemented. Given the Matlab-analysis from the IOW, it will firstly be analyzed which functions
can be identified inside the scripts. This includes functionalities occurring permanently during the script
as well as more specific functionalities with greater significance. Thereby, smaller functionalities with
same modalities such as iterative functions will be classified as a standalone group. Simultaneously and
based on the current state of research, two NoSQL databases are chosen for the transformation process
- Apache’s Cassandra and MongoDB. PostgreSQL is selected as a representative for relational database
systems. In section 4.2 it will be further explained why the different systems are chosen and how they
are characterized. Once the scripts are analyzed and the functionalities are identified, the used database
systems and the current SQL-standard will be compared in terms of their capability to realize those
Matlab-functionalities.

As a result, each function will be assigned to one out of three categories for each database system.
Each category thereby defines a certain degree of technical feasibility. On this occasion, the function-
alities will be classified as described in Table 2. Since category one defines functionalities as almost
not transformable, the next step regarding those functionalities will be to propose another way to solve
this problem. For further exemplary transformation only functions from category two and three will be
considered.

1
The Functionality cannot be transformed at all or cannot be real-
ized without making too extensive efforts including highly complex
implementations as well as support by additional software.

2
The Functionality cannot be realized by a one-to-one-
transformation but can be realized in a different way and
with reasonable effort.

3
The Functionality is already realized as a function or operator in the
database-language standard and therefore ideally can be realized by
a one-to-one-transformation.

Table 2.: Degree of Technical Feasibility

22



4. Concept

In a next step, the variety of functionalities assigned to categories two and three (functions 1 to n) will
be scaled down with the result that only two functionalities will be selected (function x and function y).
Finally, both functions will be transformed to three different database-systems using an exemplary data
model illustrating the GODESS data pack. This will involve PostgreSQL as SQL-system as well as Cas-
sandra and MongoDB as NoSQL-systems.
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Figure 6.: Methodological Design of Implementation

4.2. Used Programming Languages

Since there is a wide range of database systems to potentially fit the requirements of the GODESS
project, it is important to restrict this variety based on the latest state of art. With regards to chapter 3
there are basically two major categories to choose from. This involves SQL-based databases as well as
NoSQL database systems. In addition, there are further four different sub-categories of NoSQL databases
to be potentially chosen: key-values stores, column stores, document stores and graph databases. In
terms of performing an exemplary transformation of a short segment of the Matlab scripts provided
by the IOW, three different database systems will be included in the model. This involves a relational
DBMS, a column store and a document store. While PostgreSQL is choosen to perform as a relational
DBMS, Apache’s Cassandra is picked as a representative of column stores and MongoDB as a document
store. Since soft NoSQL-systems like object-oriented databases only coincidentally share the traits being
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described as NoSQL-characteristics and, therefore, cannot exactly be assigned to the category of NoSQL-
databases, they will not be considered. Since key-value stores and graph databases seem not to be
as suitable as the remaining NoSQL stores, they will not be considered, as well. In the following, it
will be explored why PostgreSQL, Cassandra and MongoDB are choosen and which basic features these
databases offer.

PostgreSQL

As it is the goal of this paper to perform a transformation of Matlab functions on both, SQL and NoSQL
database systems, it has been necessary to pick a SQL-database covering the majority of the SQL-standard
functionalities. PostgreSQL comes along not only with a high level conformity of the SQL-standard, but
also with a strong degree in user-friendliness and easy-to-use capabilities. Furthermore, it was used as
standard software in the scope of different theses written by students of the University of Rostock that
were also dealing with the data gathered by the GODESS in the Godland Basin. [Möl16,Mey16]

PostgreSQL exists since 1995 [VVM12], is an open-source relational DBMS [JYBC15] and can be seen as a
heavily used representative of SQL-databases. [VVM12] It is easy to install [JYBC15], fully transactional and
ACID compliant [VVM12]. Thereby, it is implemented in a client-server manner. Due to the separation of
client and server, the client’s library became lighter and it has the advantage, that any changes made
in the database engine will not affect the client. [JYBC15] Moreover, the setup of PostgreSQL automat-
ically installs pgAdmin, which is an open-source software for managing PostgreSQL databases offering
a userfriendly graphic interface. The database allows declarations and constraints like defined by the
SQL-standard. This includes primary keys, alternative keys, not null, referential integrity and attribute
and record level validation rules. [FC13]. With PostGIS this database even offers a special extension inte-
grating several geo-functions and geographic objects. [MTSA19]

In PostgreSQL, querying data is mainly realized by using the SELECT-statement. [Mom01] Listing 4.1 shows
the basic SELECT-statement specification. Basically the SELECT-statement cannot be executed without
the FROM. Whereas, the FROM-clause defines the target relation to be viewed, the SELECT-statement spec-
ified which columns will be addressed. Thereby, the user can view single or multiple columns. To view
all existing columns of a target relation, the user can specify as column name. Consequently, all rows of
the target table will be returned.

1 SELECT columnnames
2 FROM tablename ;

Listing 4.1: SELECT-statement in SQL

PostgreSQL is considered to be the best choice when very flexible query capabilities are needed or
read performance is a priority. [VVM12] Based upon real business scenarios and performed on single
servers, PostgreSQL also turned out to perform four times faster than MongoDB in terms of response
time. [MTSA19] In conclusion, PostgreSQL is a perfect fit for being a representative of relational and SQL-
based databases.

Choice of NoSQL Systems

Concerning NoSQL-database-systems, two different types of stores seem to meet the requirements of
the GODESS data. Based on the latest state of art and data store characteristics, column stores and
document stores both seem to be appropriate fits. Since Matlab is superficially used as analytic tool
and column stores are considered highly reliable in applications dealing with data analytics, a column
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oriented database will be a proper system to rely on. Therefore, Apache’s Cassandra is used, because
of its SQL-similarity in syntax and its popularity within the NoSQL community. As the GODESS
data is stored in TXT-files or in XML-format and in a semi-structured manner, document stores seem
promising as well. Consequently, MongoDB is used as a representative of document oriented databases.
According to the research community, it is not only the most popular document database [KR13], but also
cemented its place as the most popular NoSQL database in general. [MH13] The popularity along with a
huge repertoire of functionality lead to the choice of MongoDB as a second NoSQL-system. In contrast,
key-value-stores and graph databases were not considered. This is because most column stores easily
include the characteristics as well as extend the capabilities of simple key-value-stores and, additionally,
graph databases perform better in analyzing relationships among the data, which is not essential in this
case.

Cassandra

Cassandra was developed by the Apache Software Foundation and exists since 2008. [VVM12] It takes
its features from both Google’s BigTable and Amazon’s Dynamo. [KR13] This makes it a hybrid database
bringing together Dynamo’s fully distributed large design and BigTable’s column family based data
model. [TB11] Thus, concepts of both key-value-stores and columns stores are involved. It is written in
Java and similar to usual relational models, but data that need to be stored can be structured as well
as semi-structured or unstructured due to its dynamic schema. [NPP13] The query language is Cassandra
Query Language (CQL) and offers a SQL-similar syntax. Cassandra relies on BASE properties, which
makes it a AP type system regarding the CAP-theorem. [VFKV16]

The data model in Cassandra consists of keyspaces, column families, keys and columns. Before ta-
bles are created, the user needs to specify a specific namespace called keyspace along with a specific
partition strategy. Tables are then created within the defined keyspace. Cassandra partitions data across
the cluster by using consistent hashing. [LM10] Thereby it is important to choose a proper partition strat-
egy. Currently, Cassandra provides two separate partitioners. The random partitioner distributes the
key-value pairs randomly over the network. In contrast, the order-preserving partitioner distributes the
key-value pairs in a natural way so that similar keys are not far away from each other. [Apa14]. Generally,
each key corresponds to a value which represents a highly structured object. [LM10] Thus, the rows are
represented in a key-value-pair manner. Thereby, the corresponding object can be distributed over mul-
tiple columns. These columns then are grouped together into sets called column families. Additionally,
these column families can be grouped together once again into super column families. [Apa14] The column
families can be referred to tables in a relational DBMS. Hence, a table in Cassandra is a distributed multi
dimensional column-oriented map indexed by a key. [LM10]

Like SQL, CQL supports range queries. Additionally, it scales horizontally, supports linear expansion
and provides replication and sharding. [HHLD11] It offers multi-master replication that allows more than
one master at the same time and multiversion concurrency control. [AB13] Thereby, a write operation will
be replicated to other nodes while a read request will be routed to a specific target node. [HHLD11] Next
to this, Cassandra as a DBaaS provider is programmed to handle hardware failures. [NPP13]

At first sight, querying data in Cassandra seems to function just like in SQL. The SQL-like syntax
implies, that CQL can be used evenly although it is not the case. As long as there are no further re-
strictions or conditions on the SELECT-statement from Listing 4.1, there is no reason to differentiate. But
when it comes to more complex queries (like it will be explored in section 4.3), the user needs to face
some differences. Particularly when it comes to specifying the primary key, users need to be careful in
order to guarantee efficient querying performance, since there are two different types of keys than can

25



4. Concept

potentially be specified - partition keys and clustering keys. Whereas the partition key is responsible for
distributing the data among the nodes of the cluster, the clustering key is responsible for sorting the data
within a partition. [LM10]

According to Li and Manoharan [LM13], it performs slower than MongoDB in terms of read, write and
delete. Furthermore, they found that Cassandra is slower than the relational database SQL Express in
terms of read and delete, but outperforms it in write operations. In contrast, Cassandra is faster than
MongoDB when it comes to update operations due to the performed replication technique and is consid-
ered to increase its performance with the increase of the data set size. [AB13] Among other characteristics,
this makes Cassandra the best choice for large critical sensor applications [VVM12] and an optimal fit for
storing and interacting with large amounts of data. [AB13]. Subsequently, Apache’s hybrid store is applied
in social networking, on websites, in banking and finance, for real-time data analytics and by online
retailers. [NPP13]

MongoDB

MongoDB is a multi-platform database developed in 2007 as an open-source project by 10gen having
its first public release in 2009. [AB13] The word "mongo" originates from the term "humongous" [KR13]

and refers to the vast amounts of data that can be processed with MongoDB. It is written in C++ and
can be classified as a schema-free document database. [SK11] The main goal of MongoDB was to close the
gap between the fast and horizontally scalable key-value-stores and feature rich relational DBMS, which
is why this data store can be seen as a non-relational database featuring the richest and most common
operations of relational DBMS. [HHLD11] The query language is called Mongo Query Language [NPP13] and
allows to include regular expressions as well as JavaScript functions. [VVM12] Like Cassandra, MongoDB
relies on BASE properties, but is rather a CP type system than an AP type database. [AB13]

In MongoDB, the data is stored in BSON documents. [AB13]. The documents contain an ordered list of
elements consisting of field name, type and value. [NPP13] Thereby, the data is stored with self-contained
records and no intrinsic relationships. [OBLB15] Each document is identified by a unique ID and docu-
ments can be grouped together into so called collections. [AB13] Collections can be referred to tables in
a relational DBMS or to column families inside keyspace in Cassandra. In contrast, each collection can
be composed of documents having a completely different structure. [FC13] Furthermore, it is possible to
nest documents inside each other and to reference documents. [MTSA19] Generally, collections are created
on the fly whereas documents are inserted or updated using functions provided by MongoDB’s API. [FC13]

Unlike CQL, mongo querying language has no SQL-similar structure. Since, MongoDB is different in
both data model and querying language, the basic querying command looks different from the SELECT-
statement. Listing 4.2 illustrates how data in MongoDB can be addressed using the find()-operator.
Firstly, a database (db) needs to be created. Once it is created, a collection is created on the fly by the
user. Finally, this collection will be queried by using the name of the collection appended by the find()-
statement. The statement can be seen as equivalent to SQL’s SELECT-statement and offers a wide range
of possibilities to further specify the query including JavaScript functions and a powerful aggregation
framework. [Tre14]

1 db.< c o l l e c t i o n >. f i nd ( )

Listing 4.2: find()-statement in MongoDB
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In addition to horizontal scalability, it comes along with replication, a high performance aggregation
framework, strong persistence [SK11] and a good community support. [OBLB15] On top of that, MongoDB
provides GridFS as distributed file system. [KR13] The replication is performed using a master-slave repli-
cation mechanism. [AB13] Establishing multiple slaves but only one master, the master is allowed to write
and read the files while the slaves serve as backup. When the master commits, the slave with the most
recent data becomes the new master. Next to this, MongoDB allows dynamic queries [OBLB15] as well as
multi-attribute look-ups on records may containing different kinds of key-value pairs. [MTSA19]. Further-
more, it uses locks to ensure consistency and prevent multiple clients to read and update data at the
same time. [AB13]

Latest research implies that MongoDB is a high performer among NoSQL database systems. It is ten
times faster in terms of access speed than the relational and SQL-based DBMS MySQL. [HHLD11] Further-
more, MongoDB is faster than SQL Express in concerns of the creation of database buckets and better in
read, write and delete performance compared to SQL Express and Apache’s Cassandra. [LM13] In contrast,
it decreases in performance with the increase of the data set size. [AB13] Additionally, it turned out that
MongoDB performes faster in operating insert, select, update and delete than PostgreSQL. [JYBC15] Apart
from that, MongoDB is considered to be the best choice for small or medium-sized non-critical sensor
applications especially when write performance is a priority. [VVM12] Based on its characteristics, Mon-
goDB is suitable for content management systems relying on dynamic queries [AB13], mobile applications,
gaming and archiving [KR13] or real-time data analytics. [NPP13]

Summary

Finally, three different database-systems are used. Thereby, one SQL-based system and two NoSQL-
databases out of different NoSQL categories are choosen. Despite the difference in schema and data
model, there are some parallels that could be observed between all databases. Therefore, Table 3 com-
pares each part of the relational data model its analogue in the data models of Cassandra and MongoDB.
Whereas the complete data set is called database in both PostgreSQL and MongoDB, Cassandra uses
keyspaces. Furthermore a relation can be referred to a column family inside a Cassandra keypace and to
a collection of documents inside a MongoDB database. In PostgreSQL the data is identified by a primary
key while in Cassandra a set of various partition and clustering keys can be specified and MongoDB
provides document identifier. Thereby, the actual data is stored either as tuples, as key-value-pairs or as
documents.

PostgreSQL Cassandra MongoDB
Database Keyspace Database
Relation Column Family Collection
Primary Key Partition/Clustering Keys Document-ID
Tuple Key-Value-Pair Document

Table 3.: PostgreSQL, Cassandra and MongoDB: Data Models and Designation

All together, PostgreSQL, Cassandra and MongoDB form the basis of database systems for this approach.
PostgreSQL has been chosen based on familiarity and Cassandra and MongoDB were chosen based
on the latest state of art and popularity. The programming languages will transform two different
sample functionalities identified in the original Matlab script. Therefore, section 4.3 will categorize the
identified functionalities based on the defined degree of technical feasibility. Furthermore, it will be
explained how each identified functionality can be basically realized and how expensive the realization
is.
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4.3. Categorization and Comparison of Functionalities

As already mentioned, the Matlab-analysis performed by the research group "chemical in-situ sensors" at
the IOW is based on three Matlab scripts consisting of an enormous volume of mathematical operations
and functions. Thereby, the main script consists of twelve steps including the loading and processing of
the data files, comparing different CTD casts, plotting graphs and timelines and the deconvolution of
slow sensor data. In two additional scripts, practical and absolute salinity are calculated. Since, most
operations particularly in the main script depend on prior steps involving complex calculations and algo-
rithms, it is not possible to describe every single component of the script in detail nor to analyze every
operation in terms of transformability. Therefore, the Matlab scripts were screened for functionalities
occurring frequently or with special significance for the analysis results. With this in mind and like
already described at the end of section 2.3, there is a bunch of functionalities that need to be considered.

Table 4 shows the lists of functionalities detected in the Matlab scripts and compares them based on
the defined degree of feasibility. Primarily, ten different elementary functionalities can be distinguished.
This includes permanent operations like complex case differentiation, iteration, sort and merge algorithms
or element-wise and matrix multiplication, but also specific and highly significant functions such as range
queries, polynomial evaluation, variance analysis, multiple linear regression and plotting functions for
visualizing data as diagrams.

Based on which degree of feasibility a specific functionality refers to, the cell is colored green, yellow
or orange. As already mentioned in Table 2, degree three is the worst degree and is assigned to a func-
tionality that cannot be transformed at all or cannot be realized without making too expensive efforts
such as complex implementation or support by additional software. On the contrary, degree two defines
that functionalities assigned to this degree cannot be realized by a one-to-one-transformation but in a
different way and with reasonable effort. Finally, degree 1 is the best degree and is assigned to a function-
ality that is already realized as a prefabricated function or operator in the database-language standard
and therefore ideally can be realized in a one-to-one-transformation.

At this point, it is important to notice, that there is no functionality that could not be assigned to
any of the three defined degrees. Thus, every single functionality can be transformed in one way or
another, but each transformation requires a specific level of effort to be put in. Therefore, the following
section will picture how those ten functionalities can potentially be realized in the different used query
languages and what difficulties need to be faced to perform the realization.

FUNCTIONALITY SQL-Standard PostgreSQL Cassandra MongoDB
Complex Case Differentiation 2 2 2 2

Iteration 2 2 2 2
Sorting 3 3 2 3
Merging 3 3 2 3

Matrix Multiplication 2 2 1 1
Range Querying 3 3 3 3

Polynomial Evaluation 2 2 2 2
Variance Analysis 3 3 2 2

Multiple Linear Regression 1 1 1 1
Plotting Diagrams 1 1 1 1

Table 4.: Identified Functions: Comparison across Database-Systems based on Degree of Feasibility
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Complex Case Differentiation is one of the functionalities operated permanently during the Matlab-
analysis. The SQL-standard delivers two statements (IF and CASE) that can be used to differentiate
between two cases. Furthermore, optional ELSE IF-clauses are allowed. The CASE-statement then can
be used to extend the IF-statement. According to the IBM documentation, both statements are gener-
ally used to conditionally enter into some logic based on simply the status of condition. [IBM15] Another
opportunity to realize any more complex case differentiation is nesting SELECT-statements. Because
the statements are included in PostgreSQL, these methods can be performed on PostgreSQL servers as
well. Hence, simple case differentiation can be easily produced by using IF or CASE. Since the case differ-
entiation in the Matlab analysis is rather complex, this functionality needs to be assigned to category two.

In MongoDB or Apache’s Cassandra there are no statements being equivalent to CASE or IF. But since
MongoDB supports JavaScript functions, complex case differentiation can be realized this way. The same
applies to Cassandra. SQL-similar query language CQL does not provide statements like CASE or IF and,
therefore, complex case differentiation can only be realized by nesting SELECT-statements or by creating
a UDF in Java, JavaScript or another installed programming language that is choosen. In conclusion,
there is no way to implement complex case differentiation like being presented by the Matlab scripts in
a one-to-one-manner.

Iteration is similarly difficult to achieve. In PostgreSQL, iteration can be performed in a one-to-one-
transformation, if no mathematical operations are performed within the iteration. Otherwise, there is a
danger of producing endless loops over the database. Both the SQL-standard and PostgreSQL provide
four different statements for iteration. This includes FOR, LOOP, REPEAT and WHILE. The FOR-statement
is considered distinct from the other statements, as it is used to only iterate over rows of a defined re-
sult set whereas the remaining statements can be used to iterate over a series of SQL-statements until
for each a specific condition is satisfied. Furthermore, SELECT can be used recursively within another
SELECT-statement. [IBM15] LOOP represents the basic version of an iteration and is a special type of itera-
tive statement, because it does not include a terminating condition clause. Apart from that, the WHILE

statement defines a set of statements to be executed until a condition that is evaluated at the beginning
of the WHILE loop is false. [IBM15] In contrast, the REPEAT-statement defines a set of statements to be
executed until a condition that is evaluated at the end of the REPEAT loop is true. [IBM15] Generally, there
can be used multiple loops at the same time. Thereby, extern variables can be declared within the loop
by using the DECLARE-statement.

In MongoDB, iteration can either be realized by JavaScript functions or by the forEach()-Operator
within a query. Thereby, the operator is simply added to the find()-statement and, subsequently, iter-
ates over a specific collection of documents. Hence, there is a one-to-one-statement for realizing iteration
within a collection, but this will not be sufficient to cover the complexity of iterations used in the Matlab
files. Regarding Cassandra, there is no equivalent to the variety of loop-statements provided in relational
database system relying on SQL. Thus, iteration can only be realized by implementing UDFs in a foreign
programming language or by complex nesting of SELECT-statements.

Sorting illustrates the first functionality that reaches different degrees of feasibility over the used systems.
In terms of SQL-based applications and MongoDB, sorting can be realized in a one-to-one-transformation.
In contrast, it is just really not possible to make Cassandra sort the data by an arbitrary column, since
Cassandra requires a query-based modeling approach, which means that the can only order by the defined
clustering key within a specific partition.

The SQL-standard and PostgreSQL come along with a sorting ORDER BY-statement that can be added
to the SELECT environment. It simply orders the relation in an ascending or descending order by single
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or multiple columns. Likewise, MongoDB provides the $sort-command that can simply be added to the
find()-statement and can be seen as an equivalent to SQL’s ORDER BY-statement. Although Apache’s
Cassandra provides ORDER BY as well, this statement is no equivalent to the SQL original. In Cassandra,
the ORDER BY-clause can only be used to reverse the defined sort direction of a clustering key. If the user
needs to sort the data based on a specific column, this functionality can only be realized by specifying a
clustering order. Cassandra then fully automatically orders each partition based on the defined clustering
key.

Merging of different data sets is a functionality that is well developed across database applications.
Database systems perform joins or other techniques to achieve assembling various pieces of information
together. As it is the case in SQL, the Standard and PostgreSQL both deliver a rich set of JOIN-
statements. This includes INNER JOIN, FULL JOIN, LEFT JOIN or RIGHT JOIN. Thereby, INNER JOIN

selects all tuples that are included in both tables while FULL JOIN selects all tuples that are included
either in the first table or in the second table. Additionally, LEFT or RIGHT JOIN select dangling tuples
which are those tuples in the referencing relation that do not have counterparts in the referenced relation.
Another statement provided by SQL presents the UNION-statement. Whereas JOIN combines the data into
new columns, UNION rearranges the data in new rows and, thus, combines the result sets of two queries
by column position rather than column name if the column data type in both queries are matching. [IBM15]

In contrast to SQL-based database systems, NoSQL databases try to avoid join operations and, therefore,
are not designed to perform such operations efficiently. As it is the case for Cassandra, join operations as
known in SQL are simply not possible. Similar results can only be achieved by developing an appropriate
data model considering every data combination needed for efficient future querying or by implementing
complex algorithms via programming interfaces. Nevertheless, some NoSQL databases already provide
similar techniques like joins. MongoDB, for instance, comes with the $mergeObjects-command which
enables the user to combine an arbitrary number of documents into a single document. Hence, documents
can be bound together similarly to relations in a SQL-based DBMS.

Matrix Multiplication remains an issue when it comes to performing such operations efficiently on a
database server. Since most database systems are not providing a matrix data type, element-wise vec-
tor or matrix multiplication cannot be realized in a one-to-one-manner. Marten and Heuer [MH17] have
shown that matrix multiplication can be realized with reasonable effort in SQL by using a combination
of aggregate operators and join functions. Since NoSQL databases store their data in a non-rigid schema,
this method cannot be transferred effortlessly to Cassandra or MongoDB. As a result, the schema free
model of Cassandra and MongoDB impedes that matrix operations can be implemented without relying
on other programming language interfaces or complex algorithms.

Range Querying obviously can be easily achieved across all different kinds of database systems. Since
most databases are purposely designed for querying data efficiently in all kinds of different manners,
SQL, CQL and Mongo Querying Language support range queries. Like already depicted in section 4.2,
SQL queries data using the SELECT-statement. Within this statement, the WHERE-clause can be added to
specify a querying condition that refers to single or multiple relation variables which can be expressed as
a range. Equivalently to the WHERE-statement in PostgreSQL, MongoDB provides the $where-operator
which can be appended to the find()-statement for creating views satisfying a specific querying condition.
Inside the queried collection, each document that satisfies the condition is returned. CQL also serves the
WHERE-clause but due to Cassandra’s dynamic schema, there are some restrictions on it. Consequently,
the WHERE-clause can only be used on the defined keys. Hence, the user once again needs to know precisely
which column need to be queried before the schema is developed.
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Polynomial Evaluation constitutes a functionality that can be realized with adequate expense in
every database language used. Depending on the polynomial’s degree, this expense can be on a different
level. Thus, the expense increases with the degree. In the SQL-standard and PostgreSQL, polynomial
evaluation can be realized by nesting SELECT-statements. Polynomials can be even calculated within
a single SELECT-statement as long as the polynomial can be implemented as a scalar expression. Ad-
ditionally, UDFs can be implemented which composes the smarter method for evaluating high-degree
polynomials. Some SQL-based databases do even provide prefabricated functions. Microsoft Server SQL,
for instance, comes with a POLYVAL-statement that calculates polynomials automatically by a given input.

Regarding Cassandra’s CQL, UDFs remain the only possibility to evaluate polynomials, since there is
no possibility of creating scalar expressions inside the SELECT-statement. In contrast to CQL, MongoDB
provides more flexibility. Although MongoDB provides the possibility of saving UDFs implemented in
JavaScript in order to later apply them on specific documents inside a collection, polynomial evaluation
can be executed even within a query by defining an intern UDF inside the find()-statement as long as
the polynomial can be evaluated as a scalar expression. Thereby, the user can create a UDF by specifing
the following prototype form the way as desired: db.collection.find().forEach(< function >).

Variance Analysis can be transformed easily as well. In the SQL-standard as well as in PostgreSQL,
there are two prefabricated statements that can be used. This involves VAR_POP for calculating popu-
lation variances and VAR_SAMP for estimating sample variances. In terms of Cassandra and MongoDB,
there are no prefabricated statements to use. Instead, variance analysis can be implemented similarly
like described for the case of polynomial evaluation. Thus, analyzing variances of different variables and
parameters is a lot more easier in SQL, but can be realized with low effort in each database system.

In contrast to the other functionalities, Multiple Linear Regression and Plotting Diagrams re-
main difficult to achieve on a database level. Due to the complexity of multiple regression analysis,
this major functionality can only be achieved by implementing complex programs inside the databases’
aggregation frameworks, creating highly complex UDFs or by relying on additional software and pro-
gramming language interfaces. The same applies for plotting diagrams of single or multiple variables.
Although data and the related traffic can often be monitored, database systems are not purposely de-
signed to create highly specific graphs calling for an enriched color palette and a broad range of design
and layout options. Conclusively, multiple linear regression and plotting diagrams in a standard required
for the analysis performed at the IOW cannot be transformed without producing unnecessarily high effort.

Comparing PostgreSQL, Cassandra and MongoDB based on the defined degree of technical feasibil-
ity shows that the majority of functionalities can be covered by SQL-based database systems. Although
NoSQL systems like Cassandra and MongoDB already provide a wide range of functionalities enabling
the user to transform Matlab analysis into database-supported evaluations, the SQL-standard and Post-
greSQL clearly seem to outperform both NoSQL database types in terms of feasibility, since there are
more functionalities that could be assigned to a feasibility degree of two or even three. Neither a combi-
nation of column and key-value store as it is the case with Cassandra nor MongoDB as a representative
for document stores seem to achieve the same level of feasibility like the relational "dinosaur-system". In
regard to highly complex statistical methods or graphical functionalities as seen with multiple linear re-
gression and plotting diagrams, each used database system fell short of expectations. In conclusion, there
is no database system fully covering the entirety of required functionalities included in the IOW Matlab
scripts, but the potential of transformation is particularly high throughout all used query languages.

This section provided an overview about the variety of functionalities and explored how they can be
realized across the different database systems and how reasonable this realization is. Since, this thesis
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focuses on implementing only a part of the functionalities involved in the Matlab anaylsis, two func-
tionalities out of the entire set will be chosen. Therefore, section 4.4 will explore which functionalities
are chosen for which reasons. To simplify the demonstration, an exemplary data model will be de-
veloped. Thus, section 4.4 also depicts how this data model is characterized and which data will be
included.

4.4. Sample Functionalities and Exemplary Data Model

Like section 4.3 implies, there is a wide range of functionalities that can potentially be transformed
from Matlab-analysis programs into database-supported evaluation with reasonable effort. On top of
that, we have seen in chapter 2 that the data-files produced by the GODESS powerlogger contain vast
amounts of data that are processed in Matlab script consisting of highly interdependent steps. Although
some Matlab sections can run autonomously, they mostly depend on intermediate results. Furthermore,
section 4.3 has shown that not every functionality can be transformed on a database level without
undertaking expensive effort. Therefore, it will not be the goal to perform a transformation of the
entire Matlab-analysis, but to give an exemplary illustration of how selected Matlab programs could be
transformed to PostgreSQL, Cassandra and MongoDB. As a consequence, only two functionalities will
be implemented. Thereby, an exemplary data model is used for demonstrating the transformation of the
chosen functionalities.

Chosen Functionalities

Based on the comparison in section 4.3, sorting and polynomial evaluation are chosen as sample func-
tionalities for several reasons. Firstly, both functionalities together are covering the entire set of defined
degrees of technical feasibility that can be realized with reasonable effort. This is because sorting could
be assigned to degree one or two and polynomial evaluation to degree two. Secondly, there is a dif-
ference between sorting and polynomial evaluation in the number of distinct degrees of feasibility that
can be achieved. While sorting was assigned to two different degrees of technical feasibility, polynomial
evaluation achieves the same degree of technical feasibility for all uses database systems. Consequently,
implementing the sorting functionality provides an excellent example of demonstrating differences be-
tween the uses systems whereas the choice for implementing polynomial evaluation provides an adequate
basis for comparing the used database systems on the same level. All in all, the choice of the functional-
ities ensures that the data model provides strongly representative character.

FUNCTIONALITY SQL-Standard PostgreSQL Cassandra MongoDB
Sorting 3 3 2 3

Polynomial Evaluation 2 2 2 2

Table 5.: Chosen Functions: Comparison across Database-Systems based on Degree of Feasibility

Included Data

Table 6 shows the exemplary data model that has been composed for the approach of transformation.
It consists of eight variables. Thereby, four variables derive from the CTD-file whereas the other four
variables derive from the metadata structures provided by the XML-file. To simplify the data model,
not all variables included in the CTD-file were chosen. Subsequently, the data model focuses on data
being necessary for estimating conductivity. Hence, polynomial evaluation will be performed only for
calculating the actual conductivity based on the measured conductivity values provided by the CTD-
probe. Generally, the data model contains 18 individual records.
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The first two columns (profile_id and deployment_id) demonstrate the profile number and the num-
ber of deployment. Thereby, the profile number is defined as a counting variable numbering all profiles
consecutively over all deployments and the number of deployments counts all deployments chronologi-
cally. The deployment ID refers to the deployment number in the XML-file while the profile ID basically
replaces the PSDA < number >-String which constitutes the beginning of each row of the CTD-file’s
payload (see Listing 2.1) by an integer only displaying the < number >-part of it.

The third column (ts) presents the timestamp of every single measurement and, therefore, combines
multiple CTD-file variables rolled into one. This involves DATE (YY-MM-DD), TIME (HH:MM:SS)
and FRAC (MS) which are stored together in a single timestamp (YY-MM-DD HH:MM:SS.MS). Con-
sequently, the timestamp shows the year (YY), the month (first MM), the day (DD) as well as the hour
(HH), the minutes (second MM), the seconds (SS) and the milliseconds (MS) in which each measurement
was performed.

The remaining columns contain converted 16-bit-integer values for conductivity (conductivity_value)
as well as the four calibration values generated for the conductivity sensor and provided by the XML-file
(concoeff_1-4). As already mentioned in section 2.2, both are inevitable for polynomial evaluation
which means that the 16-bit-integer values represent a polynomial coefficient which can be used to com-
pute the actual conductivity values based on the given calibration coefficients. For further analysis, the
integer values will be converted and stored in float-format.

As Table 3 indicates, the exemplary data model consists of three different parts or day segments. While
the first part belongs to one deployment (deployment 8), the remaining two parts belong to another
deployment (deployment 12). This ensures that two different sets of calibration values are used for the
polynomial evaluation. Moreover, the data is not sorted by timestamp in any case and profile number
434 is split over two different days exceeding the date the measurement was started. By including the
case of date exceedance, the model ensures that the data requires to be resorted.

All in all, it need to be mentioned that the data model provides a strongly exemplary character and
primarily was designed with the intention to illustrate basic transformation possibilities of the used
database systems. Due to the limited time and resources as well as high complexity of both Matlab code
and data structures, a fully developed model cannot be applied. Therefore, two functionalities including
sorting and polynomial evaluation for conductivity have been picked and the fictional data model was
composed in orientation of parts of two different data files including the TXT-file generated for the CTD
multiparameter probe and the XML-file manually generated by the IOW researchers.

In summary, two different functionalities will be transformed based on an exemplary data model across
three different database systems. This involves PostgreSQL, Apache’s Cassandra and MongoDB. chap-
ter 5 will illustrate how sorting and polynomial evaluation are transformed from Matlab to database-
supported evaluations on the used systems. Thereby, a Matlab reference model will be provided to
ensure better comparability of the output produced by each system.
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Based on the used programming languages and the exemplary data model, the following chapter will
explore how the sample functions involving sorting and polynomial evaluation are realized. First of all,
a reference model will be implemented. The reference model will illustrate how sorting and polynomial
evaluation can be realized in Matlab. Based on the reference model, the same functionalities will be
implemented in PostgreSQL, Cassandra and MongoDB. Before the implementations are pictured, it will
be stated how the data model is constructed on each of the different database systems. Thereby, execution
time is measured for both sorting and polynomial evaluation independently on all used systems. This
includes Matlab as well as all database-supported evaluations.

5.1. Reference Model

Before sorting and polynomial evaluation will be performed on a database-supported level, a reference
model will be implemented in Matlab. Since Matlab‘s octave is a matrix and vector based programming
language, the data model is implemented as a vector based approach. Although Matlab also offers the
ability to work in database-similar table environments, this environment will not be considered, since the
original Matlab scripts written by the IOW research group do work on a matrix and vector basis, as well.
As derived from the original Matlab scripts, the data is stored in column vectors. Listing 5.1 exemplary
shows how those column vectors are realized for profile_id, deployment_id and concoeff_4. Thereby,
the first part of the data model is designated as "_old" whereas the other two parts are designated as
"_new_b" and "_new_a".

1 pro f i l e_id_o ld = [ 2 0 1 ; 2 0 1 ; 2 0 1 ; 2 0 1 ; 2 0 1 ; 2 0 1 ]
2 profile_id_new_b = [ 4 3 4 ; 4 3 4 ; 4 3 4 ; 4 3 4 ; 4 3 5 ; 4 3 5 ]
3 profile_id_new_a = [ 4 3 4 ; 4 3 4 ; 4 3 4 ; 4 3 4 ; 4 3 4 ; 4 3 4 ]
4
5 deployment_id_old = [ 8 ; 8 ; 8 ; 8 ; 8 ; 8 ]
6 deployment_id_new = [ 1 2 ; 1 2 ; 1 2 ; 1 2 ; 1 2 ; 1 2 ]
7
8 concoeff_4_old = [0 .000000000000000120393922 ;0 .000000000000000120393922 ;
9 0 .000000000000000120393922;0 .000000000000000120393922;

10 0.000000000000000120393922;0 .000000000000000120393922]
11 concoeff_4_new = [0 .000000000000000110249781 ;0 .000000000000000110249781 ;
12 0.000000000000000110249781;0 .000000000000000110249781;
13 0.000000000000000110249781;0 .000000000000000110249781]

Listing 5.1: Data as Column Vectors in Matlab

After all vectors are constructed, related vectors are further bound together to create a hyper-vector for
each variable. Listing 5.2 demonstrates how this is implemented in Matlab by using the same syntax as
before. As a consequence, eight variable vectors are created. Hence, there are vectors for profile_id,
deployment_id, ts, conductivity_value and all of the four conductivity coefficients. So far, they are
still unsorted. But now the vector model is ready to be processed. In the next steps, it will be shown
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how those vectors can be sorted on an index level and how polynomial evaluation can be performed in
order to demonstrate the computation of the actual conductivity values.

1 p r o f i l e_ i d = [ pro f i l e_id_o ld ; profile_id_new_b ; profile_id_new_a ]
2 deployment_id = [ deployment_id_old ; deployment_id_new ; deployment_id_new ]
3 t s = [ ts_old ; ts_new_b ; ts_new_a ]
4 conduct iv i ty_value = [ cond_old ; cond_new_b ; cond_new_a ]
5 concoef f_1 = [ concoeff_1_old ; concoeff_1_new ; concoeff_1_new ]
6 concoef f_2 = [ concoeff_2_old ; concoeff_2_new ; concoeff_2_new ]
7 concoef f_3 = [ concoeff_3_old ; concoeff_3_new ; concoeff_3_new ]
8 concoef f_4 = [ concoeff_4_old ; concoeff_4_new ; concoeff_4_new ]

Listing 5.2: Binding Vector Parts to Variable Vectors

Once the data model is implemented, the vectors can be sorted. Therefore, the user needs to know by
which variable should be sorted. In case of the used data model, the ts-variable is the only variable with
unique values. Hence, the data should be sorted by timestamp and the order of the ts-vector will set the
order for the remaining vector variables. As shown by Listing 5.3, ts is sorted and the index of the new
sorted vector S is saved as Idx. Subsequently, each of the remaining vector variables is sorted based on
this index. Table 7 shows the output for each vector in one table. It is clearly recognizable that the data
model now is sorted by timestamp.

1 t i c ;
2 [ S , Idx ] = so r t ( t s )
3
4 t s = S
5 p r o f i l e_ i d = p ro f i l e_ i d ( Idx )
6 deploymend_id = deployment_id ( Idx )
7 conduct iv i ty_value = conduct iv i ty_value ( Idx )
8 concoef f_1 = concoef f_1 ( Idx )
9 concoef f_2 = concoef f_2 ( Idx )

10 concoef f_3 = concoef f_3 ( Idx )
11 concoef f_4 = concoef f_4 ( Idx )
12 toc ;

Listing 5.3: Sorting Vectors on an Index Level in Matlab

After the data was brought to order, conductivity can be computed by performing polynomial evaluation
on the sorted data model. Listing 5.4 illustrates how the conductivity is calculated based on the vector
data of conductivity_value and the four different calibration values. The computation is performed
by implementing a scalar expression. The last column of Table 7 displays the vector representing the
output of the polynomial evaluation. It can be noted that the computation has produced realistic output
which is ordered chronologically. The vector containing the results produced by the reference will form
the basis of comparison for the results produced by the following database-supported evaluations.

1 t i c ;
2 conduc t i v i t y = concoef f_1 + conduct iv i ty_value .∗ ( concoef f_2 + conduct iv i ty_value . ∗ (

concoef f_3+conduct iv i ty_value .∗ concoef f_4 ) )
3 toc ;

Listing 5.4: Polynomial Evaluation in Matlab
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5.2. Prerequisite: Constructing the Databases

In contrast to Matlab, database systems do not rely on matrix structures. They rely on totally different
data models that can be of different type. Depending on the database type, the database system comes
with different schema characteristics that were discussed in chapter 3 and section 4.2. Therefore, each
database system has its individual way to store, manage and process data. In this comparison, one
relational database and two non-relational databases are included. Since relational databases use strict
schemata to store their data and both non-relational databases provide almost schema-less data modeling,
there will be some differences in creating the data model. Although all databases use query language, the
query languages are highly individual and each provides another syntax. Therefore, the following section
will explore how the exemplary data model is created as a relational model in PostgreSQL, as a column
family in Cassandra and as a collection of documents in MongoDB.

PostgreSQL

As already stated, PostgreSQL is a relational DBMS using SQL and, therefore, relies on a rigid data
model. Because of the rigidity, tables that are created have strict characteristics and data to be inserted
has to follow the defined constraints. Listing 5.5 shows how the exemplary data model is realized in
SQL by using the CREATE TABLE-statement to create a new relation. Since each relation in SQL requires
a primary key and timestamp represents the only variable with unique values, ts is defined as primary
key. Listing 5.6 displays an example of how the data is subsequently inserted by using the INSERT INTO-
statement. Thereby, the columns of the target table to be filled with data are addressed (lines 2 and 3).
Secondly, the data following strict constraints is inserted by using the VALUES-clause. After all entries of
the exemplary data model are inserted, the relational data model is finally realized.

1 CREATE TABLE pub l i c . sampledata
2 (
3 p r o f i l e_ i d in t ege r ,
4 deployment_id in t ege r ,
5 t s timestamp (10) without time zone ,
6 conduct iv i ty_value r ea l ,
7 concoef f_1 rea l ,
8 concoef f_2 rea l ,
9 concoef f_3 rea l ,

10 concoef f_4 rea l ,
11 PRIMARY KEY ( t s )
12 ) ;

Listing 5.5: Relational Model in PostgreSQL

1 INSERT INTO pub l i c . sampledata (
2 p ro f i l e_ id , deployment_id , ts , conduct iv i ty_value , concoeff_1 , concoeff_2 ,

concoeff_3 , concoef f_4 )
3 VALUES
4 (201 , 8 , TIMESTAMP ’2009−08−22␣ 14 : 0 7 : 2 2 . 6 43 ’ , 11504 , 0 .0922283727 , 0 .00123643726 ,

0 .00000000000999383726 , 0.000000000000000120393922) ,
5 (434 , 12 , TIMESTAMP ’2014−04−01␣ 23 : 5 9 : 5 9 . 8 92 ’ , 14511 , 0 .0886499939 ,

0 .00101438668 , 0 .00000000000935514578 , 0.000000000000000110249781) ;

Listing 5.6: Creating Tuples in PostgreSQL
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Cassandra

In contrast to PostgreSQL, Cassandra is a non-relational database being classified as a NoSQL database
system. Instead of storing the data in a row-oriented manner, Cassandra is a column-based storing
system. Therefore, it comes with a different approach. While PostgreSQL and MongoDB work with
databases, Cassandra uses keyspaces consisting of a set of column families. Listing 5.7 shows how the
keyspace "iowdata" is created by using the CREATE KEYSPACE-command. ’SimpleStrategy’ was selected
as class for the keyspace and the replication factor is set to ’1’. This means that the keyspace is created
on a single node cluster and assigns the same replication factor to the entire cluster. In order to enter
the keyspace the USE-command is used like depicted in Listing 5.8.

1 CREATE KEYSPACE iowdata WITH r e p l i c a t i o n = {
2 ’ c l a s s ’ : ’ S impleStrategy ’ ,
3 ’ r e p l i c a t i o n_ f a c t o r ’ : ’ 1 ’
4 } ;

Listing 5.7: Creating a Keyspace in Cassandra

1 USE iowdata ;

Listing 5.8: Entering the Keyspace in Cassandra

Subsequently, a column family is created by using the CREATE TABLE-command. In contrast to SQL-based
table creation, the primary key consists of a set of partition and clustering keys. profile_id is defined
as the partition key while ts is set as clustering key. This ensures that data within a partition later
can be ordered by timestamp. In addition, it is defined in line 12 that the order should be ascending.
Finally, the data is inserted similarly to SQL with the only difference, that each key-value-pair needs to
be inserted individually (like presented in Listing 5.10). By applying the BATCH-environment, all INSERT
INTO-commands can be performed in one unit.

1 CREATE TABLE sampledata
2 (
3 p r o f i l e_ i d int ,
4 deployment_id int ,
5 t s timestamp ,
6 conduct iv i ty_value f l o a t ,
7 concoef f_1 f l o a t ,
8 concoef f_2 f l o a t ,
9 concoef f_3 f l o a t ,

10 concoef f_4 f l o a t ,
11 PRIMARY KEY ( pro f i l e_ id , t s )
12 ) WITH CLUSTERING ORDER BY ( t s ASC) ;

Listing 5.9: Column Family Model in Cassandra

1 BEGIN BATCH
2 INSERT INTO sampledata ( p ro f i l e_ id , deployment_id , ts , conduct iv i ty_value ,

concoeff_1 , concoeff_2 , concoeff_3 , concoef f_4 )
3 VALUES (201 , 8 , ’ 2009−08−22␣ 14 : 0 7 : 2 2 . 6 43 ’ , 11504 , 0 .0922283727 , 0 .00123643726 ,

0 .00000000000999383726 , 0.000000000000000120393922) ;
4 INSERT INTO sampledata ( p ro f i l e_ id , deployment_id , ts , conduct iv i ty_value ,

concoeff_1 , concoeff_2 , concoeff_3 , concoef f_4 )
5 VALUES (434 , 12 , ’ 2014−04−01␣ 23 : 5 9 : 5 9 . 8 92 ’ , 14511 , 0 .0886499939 , 0 .00101438668 ,

0 .00000000000935514578 , 0.000000000000000110249781) ;
6 APPLY BATCH;

Listing 5.10: Creating Key-Value-Pairs in Cassandra
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MongoDB

Like Cassandra, MongoDB is classified as a non-relational database and therefore comes with a different
approach compared to PostgreSQL. In contrast to Cassandra and SQL-based databases, MongoDB does
not store data in column families or relations, but in collections of documents. Like key-value pairs in
Cassandra, documents do not have to follow defined constraints. They are created on the fly and do
not need to contain entries for every field inside the collection. Due to ensure a more significant com-
parison of the used database systems, it is assumed that each document inserted consists of the same fields.

Before data can be incorporated, a database and a collection within the database need to be created.
Listing 5.11 and Listing 5.12 demonstrate how this is realized in the Mongo shell. The new database "iow-
data" is created by simply using the command use < database name >. In contrast to Cassandra, the
user do not need to enter the database. If the user later want to switch to a different database he simply
uses the use-command again. Next, the collection "sampledata" is created by using the createCollection-
command.

1 use iowdata

Listing 5.11: Creating a New Database in MongoDB

1 iowdata . c r e a t eCo l l e c t i o n ( sampledata )

Listing 5.12: Creating a Collection in MongoDB

Different collections can be addressed without switching from one to another. This applies for all basic
operations such as inserting, updating and deleting data. Listing 5.13 displays an example of how the
underlying data model is inserted in MongoDB by appending the insert-operator to the collection name.
The data is structured as documents and the documents are stored in JSON. Although it is not neces-
sary, a field type was defined for every field to ensure a higher comparability of the model. In contrast
to Cassandra and PostgreSQL, MongoDB does not define a column (here: field) as primary key. Rather,
an object ID ($oid) is added automatically to each document to ensure uniqueness. Similarly to CQL,
each document need to be inserted individually. After all entries of the exemplary data model have been
entered, the collection was completed.

1 db . sampledata . i n s e r t ( [
2 {
3 "_id" : {" $oid " : "5 e2eb07d9226ce4108941d10" } ,
4 " p r o f i l e_ i d " : {"$numberLong" : "201" } ,
5 "deployment_id" : {"$numberLong" : "8" } ,
6 " t s " : {" $date " : {"$numberLong" : " 1250942842643" }} ,
7 " conduct iv i ty_value " : {"$numberDouble" : "11504" } ,
8 " concoef f_1 " : {"$numberDouble" : " 0.0922283727 " } ,
9 " concoef f_2 " : {"$numberDouble" : " 0.00123643726 " } ,

10 " concoef f_3 " : {"$numberDouble" : " 9.99383726 e−12" } ,
11 " concoef f_4 " : {"$numberDouble" : " 1.20393922 e−16"}
12 }} ] )

Listing 5.13: Collection Model in MongoDB

This section has shown that creating the same exemplary data model in three different systems can be
highly individual. Furthermore it pointed out that creating this model is considerably different from the
vector-based approach explored in section 5.1. Apart from differences in the data model, the systems
can vary heavily in syntax. Thus depending on the requirements, it can be less or more easy to create
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the data model and the user needs to specify his needs ahead of time. In section 5.3 and section 5.4
it will be further elaborated on this by exploring how sorting and polynomial evaluation can be trans-
formed to the used database systems. Thereby, section 5.3 will focus on sorting the data model by
timestamp while section 5.4 will explore how conductivity can be computed by performing polynomial
evaluation.

5.3. Database-Supported Sorting

The following section explores which queries are used in order to sort the exemplary data model by
timestamp. Furthermore, it will be shown which output the different queries produce. As mentioned in
section 4.3, sorting has achieved different degrees of feasibility for the used database systems. Table 8
once again displays the achieved degrees. Whereas sorting can be realized by simply using prefabricated
functions and operators in PostgreSQL and MongoDB, it is comparably different to order column families
in Cassandra. Therefore dependent on the data model and the query language syntax, different databases
will produce different output. In this section it will be illustrated in which way the outputs differ from
each other and how they refer to the reference model’s results. Furthermore, measured execution times
for sorting the exemplary data model by timestamp will be displayed for all used database systems and
the Matlab reference model.

FUNCTIONALITY SQL-Standard PostgreSQL Cassandra MongoDB
Sorting 3 3 2 3

Table 8.: Sorting: Comparison across Database-Systems based on Degree of Feasibility

PostgreSQL

Since PostgreSQL relies on a relational database approach, relations can be ordered by any arbitrary
column or even by multiple columns at the same time. Listing 5.14 demonstrates how the exemplary
data model is sorted in order to reproduce the results generated by the vector-based Matlab approach
in section 5.1. As already explained PostgreSQL basically queries the stored data by using the SELECT-
environment. By applying the ORDER BY-clause inside the SELECT-statement environment, the entire table
can be sorted by ts. By setting using ∗, it is ensured that sorting will be applied for all tuples of the
target table. As a result the entire related will be ordered like specified.

1 SELECT ∗ FROM sampledata ORDER BY ts ;

Listing 5.14: Sorting by Timestamp in PostgreSQL

Table 9 shows the output produced by the applied SELECT-statement. It can be observed that the relation
is now ordered by timestamp. As a result, the problem of profile 434 exceeding the date is solved and
all tuples of the relation "sampledata" are ordered chronologically. Thereby, the remaining columns
are ordered based on the sorting index of the ts-column which means that every tuple of the relation
retain its related values. Compared to the reference model , both approaches lead to the same results
(see Table 7. Hence, PostgreSQL was able to reproduce the output of the Matlab-analysis exactly as
expected.

41



5. Implementation

Table 9.: Sorted Output in PostgreSQL

Cassandra

In contrast to SQL-based databases, it is simply not possible in Cassandra to order an entire column
family by an arbitrary column only by querying and without considering the sorting structure ahead
of time before the data model is constructed. This is because Cassandra uses a set of partition and
clustering keys instead of the primary key applied in SQL. In this data model, profile_id is defined as
partition key whereas ts constitutes the clustering key within each partition. Hence, data will be ordered
automatically by the specified clustering key in every single partition.

Listing 5.15 presents the query that is used to sort the data in the exemplary data model. In con-
trast to PostgreSQL, the query requires no ORDER BY-clause inside the SELECT-statement environment
because the data is ordered automatically by the defined clustering-key. The ORDER BY-clause would only
be used in order to reverse the sorting direction of the cluster. Similarly to the query applied in Post-
greSQL, every key-value-pair of the entire target column family "sampledata" can be addressed by using
the ∗-operator. Listing 5.15 demonstrates that the same query that was implemented in PostgreSQL can
be reproduced with less code. The drawback is that the user needs to specify a definite data model ahead
of time and therefore exactly needs to know which queries will be performed.

1 SELECT ∗ FROM sampledata ;

Listing 5.15: Automated Sorting by Clustering Key in Cassandra

Table 10 screens the output produced by executing the sorting query in the Cassandra shell. Unlike the
results printed in the PostgreSQL environment, the columns changed their order. Thereby, the parti-
tion key (profile_id) ranks first while the clustering key (ts) ranks second. The remaining columns
inside the column family kept their order whereas the only column that previously was positioned in
between the partition key and clustering key (deployment_id) was attached to the end and now con-
stitutes the final column. The displayed output also demonstrates that Cassandra achieved the same
results like PostgreSQL and the reference model exactly as expected (see Table 7. Furthermore, Cas-
sandra uses less code by defining the sorting order while specifying the data model of the column fam-
ily.

42



5. Implementation

Table 10.: Sorted Output in Cassandra

MongoDB

MongoDB uses an entirely different approach to organize and sort its data. Since MongoDB is neither
a row-based nor a column-based database system, it relies on documents and collections and provides a
totally different querying language compared to SQL and CQL. Thus, similar results are achieved by ap-
plying different statements and producing a differently structured output. Like mentioned in section 4.3,
MongoDB provides the sort-operator that works analogously to SQL’s SELECT-statement and is simply
appended to the find()-command. The operator allows to order by any arbitrary column and even by
multiple columns.

Listing 5.16 depicts the query that was performed to sort the documents stored in the database. In
this case, the collection "sampledata" is ordered by the ts-field. By setting the order option to "1" it is
ensured that the documents will be displayed in ascending order. Because MongoDB works with docu-
ment instead of table environments, it can be sometimes difficult to review the printed output. Therefore,
the pretty()-command is attached to print the output lucidly. It configures the cursor and adds space in
order to display the results in an easy-to-read-format.

1 db . sampledata . f i nd ( ) . s o r t ({ t s : 1 } ) . p re t ty ( )

Listing 5.16: Sorting by Timestamp in MongoDB

Although the queries of MongoDB can be often used almost analogously to the related SQL-queries, the
output looks enormously different. Listing 5.17 screens an extract of the results produced by executing the
shown query in the Mongo shell. Thereby, two instances are shown demonstrating that exceeding the date
is not an issue any more. The first instance identified by the ObjectId "5e2eb41a02a5b0410826acd7"

displays the last record of profile 434 on the first of April in 2014. The second instance identified by the
ObjectId "5e2eb36302a5b0410826accc" displays the first record of profile 434 on the second of April
in 2014.

Since the data is stored in JSON format, the output is printed in JSON, as well. Thereby, each JSON
document retains its structure. The only difference is that the documents now are ordered by timestamp.
Therefore, MongoDB basically achieves the same results like PostgreSQL, Cassandra and the reference
model implemented in Matlab (see Table 7). Although the output design relies on the structure of the
stored documents and therefore looks a little bit different from table-oriented structures, the results are
the same as expected.
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1 }{
2 "_id" : ObjectId ( "5 e2eb41a02a5b0410826acd7" ) ,
3 " p r o f i l e_ i d " : NumberLong (434) ,
4 "deployment_id" : NumberLong (12) ,
5 " t s " : ISODate ( "2014−04−01T21 : 5 9 : 5 9 . 8 9 2Z" ) ,
6 " conduct iv i ty_value " : 14511 ,
7 " concoef f_1 " : 0 .0886499939 ,
8 " concoef f_2 " : 0 .00101438668 ,
9 " concoef f_3 " : 9 .35514578 e−12,

10 " concoef f_4 " : 1 .10249781 e−16
11 }{
12 "_id" : ObjectId ( "5 e2eb36302a5b0410826accc " ) ,
13 " p r o f i l e_ i d " : NumberLong (434) ,
14 "deployment_id" : NumberLong (12) ,
15 " t s " : ISODate ( "2014−04−01T22 : 0 0 : 0 0 . 2 1 0Z" ) ,
16 " conduct iv i ty_value " : 14510 ,
17 " concoef f_1 " : 0 .0886499939 ,
18 " concoef f_2 " : 0 .00101438668 ,
19 " concoef f_3 " : 9 .35514578 e−12,
20 " concoef f_4 " : 1 .10249781 e−16
21 }{

Listing 5.17: Sorted Output in MongoDB (Extract)

Execution Times and Summary

Although the exemplary data model is quite small, execution times were measured for all performed
sorting algorithms on a hard disk environment. This includes the three used database systems as well as
Matlab as a reference system. Thereby, the execution time was measured in milliseconds. The executions
have been measured ten times and afterwards an average was calculated for each of the involved systems.
Table 11 screens the measured results. It can be concluded that PostgreSQL as due to its row storage
and concurrency control is 80 times slower than the schema-less NoSQL databases. For MongoDB there
even could not been measured any value higher than zero, since it operates within the microsecond range.
Furthermore, Matlab was faster than PostgreSQL as well, but slower than Cassandra and MongoDB. In
this case, the differences in speed can be considered negligible due to the small data set size. But when
it comes to massive data, this could mean a potential issue for relational DBMS and Matlab.

Number of Execution Matlab PostgreSQL Cassandra MongoDB
1 7.2 82 0.002 0
2 4.2 78 0.002 0
3 8.8 78 0.003 0
4 5.2 81 0.002 0
5 8.9 74 0.002 0
6 4.0 83 0.002 0
7 3.8 82 0.002 0
8 5.6 114 0.003 0
9 5.0 79 0.002 0
10 3.7 92 0.002 0
∅ 5.6 84.3 0.002 0.0

Table 11.: Execution Times for Sorting in Milliseconds

In conclusion, all used databases met the expectations and produced the same results like the reference
model when it comes to sort the exemplary data model by timestamp. Thereby, each database provides
its unique technique and the output appearance can vary from system to system. Moreover, NoSQL
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databases were faster than Matlab and PostgreSQL. But substantively, all approaches led to the same
results. In section 5.4 it will be explored how conductivity can be computed based on polynomial
evaluation. Furthermore, it will be analyzed whether all databases are again able to meet the expectations
by reproducing the same output like the reference model.

5.4. Database-Supported Polynomial Evaluation for Conductivity

As a next step, it will be explored which queries were applied to compute the actual conductivity val-
ues by polynomial evaluation based on 16-bit-integers. Therefore, the following section will describe
how polynomial evaluation performed by the Matlab reference model can be transformed to the used
database systems. Furthermore, the output produced by the four different systems will be displayed and
compared to each other. Table 12 once again displays the achieved degrees of feasibility. Like depicted in
section 4.3 none of the database systems is able to transform this functionality in a one-to-one-manner
or by a prefabricated function. Nevertheless, polynomial evaluation can be performed in a different way
with reasonable effort. Although polynomial evaluation achieves the same level of technical feasibility
on any database system, every database provides an individual technique to realize the transformation.
Hence, it is shown what techniques are applied and how they differ from each other. Additionally, the
techniques will be compared in terms of the measured execution time.

FUNCTIONALITY SQL-Standard PostgreSQL Cassandra MongoDB
Polynomial Evaluation 2 2 2 2

Table 12.: Polynomial Evaluation: Comparison across Database-Systems based on Degree of Feasibility

PostgreSQL

In PostgreSQL, there are two different techniques that could be applied. The polynomial evaluation can
be either performed by using a scalar expression inside the SELECT-statement or by implementing an UDF
in an internal or external programming language. Listing 5.18 shows how the evaluation is transformed
by implementing the polynomial as a scalar expression. Thereby, the expression is simply implemented as
a sequence of addressed column names and mathematical operators within the SELECT-environment and
saved as "conductivity". The results are then sorted by timestamp by applying the ORDER BY-statement.
The advantage of this method is that the user does not need to specify an UDF and the operation can
be performed directly on a database level.

1 SELECT sampledata . concoef f_1 + sampledata . conduct iv i ty_value ∗ ( sampledata . concoef f_2 +
sampledata . conduct iv i ty_value ∗( sampledata . concoef f_3+sampledata . conduct iv i ty_value ∗
sampledata . concoef f_4 ) )

2 AS conduc t i v i t y
3 FROM sampledata
4 ORDER BY sampledata . t s ;

Listing 5.18: Polynomial Evaluation in PostgreSQL (Scalar Expression)

Instead of scalar expressions, the user can also define an UDF and later apply it on a target relation.
Listing 5.19 demonstrates how this was realized on the exemplary data model. Firstly, an UDF called
"polyval" was specified by using the CREATE OR REPLACE FUNCTION-command. Thereby, the REPLACE-
statement ensures that all functions previously implemented having the same name will be overwritten
to avoid functional redundancy. In the parenthesis, input variables are specified. The output is specified
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right after the RETURNS-statement. In this case five floating numbers are used as input and one floating
number as output. Between the BEGIN-statement and the END-statement the UDF is implemented based
on the language that was specified by the LANGUAGE-statement. Since the polynomial is relatively less
sophisticated, the procedural language of PostgreSQL, "plpgsql", could be used.

Lines eight, nine and ten demonstrate how the UDF is used inside the SELECT-statement. In contrast
to the scalar expression, the query is shorter, since each relevant column can be typed simply inside the
polyval -function. The output is once again saved as "conductivity" and sorted by timestamp by using
the ORDER BY-statement. The drawback of this method is, that the user needs to know how the UDF
is specified, which can be an issue in terms of data provenance. The advantage of this method is that the
UDF can be applied as often as needed and thereby shortens query expressions.

1 CREATE OR REPLACE FUNCTION po lyva l ( a r ea l , b r ea l , c r ea l , d r ea l , x r e a l )
2 RETURNS r e a l AS $$
3 BEGIN
4 RETURN a + x ∗ (b + x∗( c+x∗d) ) ;
5 END; $$
6 LANGUAGE p lpg sq l ;
7
8 SELECT po lyva l ( sampledata . concoeff_1 , sampledata . concoeff_2 , sampledata . concoeff_3 ,

sampledata . concoeff_4 , sampledata . conduct iv i ty_value ) AS conduc t i v i ty
9 FROM sampledata

10 ORDER BY sampledata . t s ;

Listing 5.19: Polynomial Evalutation in PostgreSQL (UDF)

Cassandra

In contrast to SQL-based databases, Cassandra’s CQL does not allow to use scalar expressions directly
within the SELECT-statement. Therefore, implementing an UDF remains the only possibility for realizing
a transformation of a polynomial evaluation. Procedurally, implementing an UDF in CQL works almost
similarly like in SQL. Listing 5.20 illustrates how polynomial evaluation is performed by creating an UDF
in Cassandra. The major difference is that Cassandra has no own procedural language, and therefore
UDFs are implemented in Java or JavaScript by default. Furthermore, the possibility of implementing
UDFs needs to be enabled in the Cassandra YAML-file that manages general settings of the server and
additional programming languages need to be installed on the users own. To update the settings, the
Cassandra server needs to be restarted.

In this case, the UDF is implemented by the systems default language right after the AS-statement.
Since the default language is Java, the UDF is implemented by using the familiar return-expression
followed by a sequence of variables and mathematical operators. Furthermore, behaviour on invocation
with zero values must be defined for each UDF. This is realized by using the RETURNS NULL ON NULL

INPUT-statement declaring that the function will always return null if any of the input arguments is null.
Apart from that, the UDF is implemented and deployed like in SQL. This means that the UDF is cre-
ated by using the CREATE OR REPLACE FUNCTION-environment and specified for producing one floating
number from five inputted floating numbers by executing the defined scalar expression. Additionally, the
UDF is applied within the SELECT-statement and saved as "conductivity". Similarly to the implementa-
tion of sorting in section 5.3, no ORDER BY-statement is required, since Cassandra orders each outputted
partition automatically by the defined clustering key.
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1 CREATE OR REPLACE FUNCTION po lyva l ( a f l o a t , b f l o a t , c f l o a t , d f l o a t , x f l o a t )
2 RETURNS NULL ON NULL INPUT
3 RETURNS f l o a t
4 LANGUAGE java
5 AS ’ re turn ␣a␣+␣x␣∗␣ (b␣+␣x∗( c+x∗d) ) ; ’ ;
6
7 SELECT po lyva l ( concoeff_1 , concoeff_2 , concoeff_3 , concoeff_4 , conduct iv i ty_value ) AS

conduc t i v i ty
8 FROM sampledata ;

Listing 5.20: Polynomial Evaluation in Cassandra

MongoDB

Similarly to the realization of sorting the data model by timestamp, MongoDB provides a different ap-
proach relying on a totally different querying language syntax. Like mentioned in section 4.3, MongoDB
offers the forEach()-operator for iterating through a collection of documents. Listing 5.21 shows how
polynomial evaluation for conductivity is realized for each document by iterating over the collection
"sampledata". The operate is simply appended to a sequence of statements including the find-statement
and the sort()-operator. Since MongoDB relies on JavaScript and JSON, a JavaScript function is used
to compute the conductivity values by writing a scalar expression inside the function(){}-environment.
Thereby, it is specified, that the function should be applied on the document type (doc) and print the
result of the implemented scalar expression for each document inside the collection print().

1 db . sampledata . f i nd ( ) . s o r t ({ t s : 1 } ) . forEach ( func t i on ( doc ) { p r i n t ( doc . concoef f_1+doc .
conduct iv i ty_value ∗( doc . concoef f_2+doc . conduct iv i ty_value ∗( doc . concoef f_3+doc .
conduct iv i ty_value ∗doc . concoef f_4 ) ) ) })

Listing 5.21: Polynomial Evaluation in MongoDB

Results and Summary

All in all, it could be shown that there are some differences in the way the transformation was realized.
Although all databases reached the same degree of technical feasibility concerning polynomial evaluation,
they provide several techniques to achieve it. These techniques for computing conductivity based on
polynomial evaluation split into direct querying of scalar expressions, iterative querying or UDFs. In the
case of PostgreSQL both a direct querying approach and a UDF were used. In Cassandra, polynomial
evaluation was implemented as UDF as well, but in a different procedural language. In MongoDB, the
functionality was realized by iterative querying over a collection of documents.

Furthermore, some databases provide an individual procedural language while others rely on external
languages. For instance, PostgreSQL provides an individual procedural language for implementing UDFs
whereas Apache’s Cassandra relies on an external procedural language. But despite the differences in
realization and the applied programming language, all databases were able to realize polynomial evalua-
tion with reasonable effort.

Table 13 displays the computed conductivity values printed by the used database systems and the refer-
ence model. Although the output sometimes is rounded differently dependent on the underlying system,
all databases printed the same results like the reference model. Thus, there are no differences between
relational and non-relational systems in concerns of the printed results and each program including Post-
greSQL, Cassandra and MongoDB delivered exactly the values that were expected.
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Matlab PostgreSQL Cassandra MongoDB

Table 13.: Polynomial Evaluation for Conductivity: Output of all Systems

Table 14 presents the measured execution time in milliseconds for each of the performed evaluations.
Similarly to section 5.3, each execution has been measured ten times on a hard disk environment and an
average was calculated afterwards (twice for PostgreSQL: scalar expression (SE) and UDF). The values
show that Matlab and MongoDB performed 80 times (or in case of UDF 90 times) faster than Post-
greSQL and 110 times faster than Cassandra. Generally, databases that used UDFs were slower than the
remaining systems which is because they first need to save a function before the query can be executed.
Furthermore, PostgreSQL performed slightly better than Cassandra in polynomial evaluation although
both systems applied UDFs. This is probably because PostgreSQL provides an internal procedural lan-
guage and Cassandra relies on external languages. Another interesting point is that MongoDB once again
performs in the microsecond range and therefore only zero values could be measured.

Number of Execution Matlab PostgreSQL Cassandra MongoDBSE UDF
1 0.5 81 84 111 0
2 0.1 74 86 122 0
3 0.4 73 95 103 0
4 0.2 83 80 136 0
5 0.7 80 126 115 0
6 0.1 76 76 108 0
7 0.1 87 103 103 0
8 0.1 84 93 105 0
9 0.1 73 92 101 0
10 0.1 91 84 104 0
∅ 0.2 80.2 91.9 110.8 0.0

Table 14.: Execution Times for Polynomial Evaluation in Milliseconds

In conclusion, all databases met the expectations and produced the same results like the reference model in
terms of evaluating the polynomial for conductivity. Thereby, each database provides its unique technique,
but the output appearance is equal. In chapter 6, these results will be discussed critically and current opin-
ions on the differences between SQL and NoSQL databases will be explored.
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The results have shown that it is possible to reproduce parts of the Matlab analysis by applying database-
supported evaluations. Although the examples clearly demonstrate how Matlab programs can be trans-
formed almost in a one-to-one-manner and sometimes with more efficient performance, there is still a
lot of work and research that needs to be done for realizing a database-supported transformation of the
entire Matlab analysis. Due to the rather representative characteristics of the constructed exemplary
data model and other capacities, there are some points that need to be criticized or require further ex-
amination. Therefore, the following chapter will explore occurred problems as well as potential issues.
Additionally, current opinions on the differences between traditional RDBMS and novel NoSQL will be
discussed. Moreover, it will be stated which fields still require further research and how these fields should
be treated.

The process of transforming Matlab based analysis to database-supported evaluations offered some dif-
ficulties that either needed to be faced or affected the project’s results. First of all, the Matlab code is
highly sophisticated and consists of over thousands lines of code. On top of that, there is a wide range of
researchers that did work on the files. Consequently, a big majority of the people working with the files
are only users and therefore are only sparsely familiar with the details of the code. Thus, it can be very
difficult for an outsider and even for the user to retrace any step in detail. Due to the high complexity
of the Matlab-analysis, further research needs to be done on how a transformation of the entire original
Matlab analysis can be realized.

Apart from that, it has sometimes been an issue to work with NoSQL databases, since they are far
less developed than the relational dinosaur-databases. They were less user-friendly and difficult to install
compared to the relational database. Furthermore, PostgreSQL’s database environment, pgAdmin, was
easier to use and provided greater functionality than the NoSQL Shells or MongoDB Compass. For
instance, it was not possible to copy code into the MongoDB shell or to perform complex queries inside
the environment of MongoDB Compass. In addition, Cassandra disables UDFs by default so that is was
necessary to change the settings of the server before the data could be analyzed. But the main issue
remains the highly sophisticated Matlab-analysis.

Therefore, the data model that was used in this paper provides only representative character. This
means that not all functionalities were included and the data model was constructed manually. Hence,
the original Matlab analysis was strongly simplified by constructing a reference model in Matlab. Fur-
thermore, there is no underlying database system yet developed for the purposes of the GODESS data.
This would require extensive effort and offers enough tasks for a standalone project. Hence, each data
model was created manually for each platform and did not use a unified TXT-file as input which poten-
tially makes the results of each platform difficult to compare.

Thereby, the data model includes only parts of the data included in the CTD and the XML-file. Data from
the TriOS and Nortek files were completely excluded. Another point of criticism is that data from the
CTD and XML files were combined in a single representation and not in two standalone tables, column-
families or collections which could have a massive impact on the results. Due to the great complexity of
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the original scripts and the enormous simplification of the reference Matlab model it is imaginable that
some functionalities included in the original scripts were overlooked and therefore were not considered
while analyzing the feasibility of the transformation. On top of that, UDFs provide almost endless possi-
bilities to implement anything required for the user’s data analysis. Basically, any potential problem can
be solved by UDFs relying on more or less sophisticated algorithms. This involves even functionalities
that were assigned to the lowest defined degree of technical feasibility including multiple linear regression
and graph plotting. Therefore, it was sometimes difficult to distinguish which functionalities would be
transformable with reasonable effort and which not.

It is also imaginable, that PostgreSQL, Cassandra or MongoDB do not represent the platform to be
the most suitable of their categories. Probably, different relational database platforms, column stores
or document stores would have suited the requirements better and therefore covered a wider range of
functionalities than need to be transformed. Due to the different schemata applied by the employed
databases, it is also difficult to compare the databases with Matlab or even each other. In terms of
comparative criteria, only execution time was measured and therefore constitutes no fully representative
parameter. Furthermore, other criteria such as memory usage need to be considered and there is required
further research to analyze the performance of the employed platforms.

Another aspect that needs to be discussed is how suitable relational and non-relational databases are
in general to face the problems of a Matlab transformation and what issues remain despite their capabil-
ities. Since relational DBMS remain the main data management technology despite the trend of NoSQL-
waves [NPP13], it is a common opinion that NoSQL systems will stay nothing but a trend appearance.
Supporters of this idea state that NoSQL databases will suffer from the same fate like object-oriented
databases whose features were took over by relational databases and significantly decreased the number
of users of such databases. [Ord13] The fact that NoSQL still lags behind the relational grandpa in terms
of numbers of users [NPP13] could already be a warning symbol.

One reason for this fact is that there is no querying language in the NoSQL area being able to span
multiple data models at the same time, because each class of NoSQL database is designed for a specific
purpose. [KR13] Thus, some researchers claim there is a need for a common NoSQL query language which
can be used for all NoSQL databases, if the NoSQL movement wants to survive. [NPP13] Therefore, Un-
structured Query Language (UnQL) constitutes the most promising but still immature approach. [KR13]

Developed by the creators of SQLite and CouchDB, it is one collective effort to bring a familiar and
standardized data definition and manipulation language relying on SQL like syntax, open-source devel-
opment and features that combine structures from both relational and non-relational systems. [NPP13] If
a uniformed language such as UnQL has the chance to mature before the NoSQL movement is possibly
devoured by the relational dinosaur, it could probably be a game changer.

Apart from the competition between relational and non-relational databases, there is the question whether
relational databases are able to face the same problems like statistical languages. Critics claim that
RDBMSs could be beaten by specialized architectures such a scientific and intelligence databases or
array storage engines like Matlab. [SK11] They argue that the integration of mathematical packages or
scientific computing programming languages like R and Matlab into databases and systems relying on
MapReduce still remains limited. [Ord13] Even this case has shown that transforming statistical analysis
to database-supported evaluations brings along various difficulties arising out of the immatureness of
the databases’ statistical libraries or lacks in dealing with data structures like arrays and matrices. On
the other hand, the problem of integrating statistical and machine learning methods and models with
RDBMSs has received moderate attention. [Ord13] There is still a lot of research to do on these issues, but
it can be clearly stated that statistical methods as well as complex data structures like matrices will be
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more and more integrated into common database systems. The past has shown over and over again that
relational databases were able to adapt techniques developed by other systems. Maybe it is only a matter
of time until they manage integrating the features that make NoSQL databases and statistical languages
still a better fit for specific purposes, as well.

Since this experiment has shown that neither a relational nor a NoSQL database was capable to trans-
form the entire Matlab analysis in a 1-to-1-manner with the same level of effort, I suggest to not view
the different platforms as a replacement for each other, but as a complementary product. Right at the
moment, the community agrees that SQL and NoSQL cannot be used interchangeable for solving any
type of problem but the user should rather choose between the two types of databases for a given in-
stance. [TB11] To my mind, the same applies to the relationship of Matlab and database applications in
general. Like the illustration has indicated, there are still parts of the analysis that are more efficient
to perform in Matlab. Therefore, it would be a great idea to store the data on a database server and
to perform feasible functions on a database level. In addition, functions requiring too extensive effort,
should still be performed in Matlab. Thus, it cannot be stated which database consitutes the most suit-
able standalone solution.

There is rather required a holistic approach considering the strengths of both sides including Matlab
and the database server. The more features of statistical languages can be efficiently transformed to
database-supported evaluation, the more efficient this hybrid model will generally perform. To increase
this rate, it is necessary to study the integration of statistical methods and matrix computations with
database systems in more depth and to extend DBMSs with matrix data types, matrix operators and
linear algebra methods. [Ord13] Additionally, databases should incorporate array and matrix storage and
be extended to include mathematical libraries. [OBLB15] Furthermore in concerns of UDFs, query opti-
mization techniques need to be adapted. Since UDFs constitute a great possibility for integration (as
demonstrated in this paper) but work in main memory, there is a strong need of optimization. Otherwise,
they cannot call relational operators, are fed by table scan operators and therefore impair execution time
and memory usage dramatically. [Ord13]

Generally, more and more processes are becoming digitized and users often can be overstrained by the
wide range of database systems to choose from. Therefore, it needs to become a common business that
users analyze their needs. Furthermore, users needs to became better educated to decide more efficiently
between the variability of available databases and to draw conclusions about the necessity of employing
a database system for their needs. If users decide upon launching database systems they should consider
different criteria. This involves their businesss model, the demand for ACID transactions and potential
costs. [HHLD11] Moreover, potential querying language, involved features and the strenghs and weaknesses
of the underlying data model should be considered. [NPP13]

As this chapter has pointed out, there is a lot of research to be performed in concerns of different
aspects when it comes to statistical analysis to be transformed on a database server. This includes
the further development of databases in terms of matrix operations, array storage and mathematical
packages as well as to find ways of applying different platforms complementary to achieve more effi-
cient performance. Furthermore, it was stated that there is a bunch of difficulties that need to be
faced in order to transform the Matlab analysis to database-supported evaluations and that the em-
ployed data model as well as the reference model are capable of future improvement. Nevertheless,
both models can be viewed as strongly represent illustrations underlying the mentioned needs for future
research.
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This thesis examined how Matlab-analysis that are performing strongly memory consuming algorithms
can be potentially transformed into database-supported evaluations in SQL and NoSQL systems. Thereby,
this work focuses on the Matlab analysis that is performed by researchers of the IOW working with highly
sensitive scientific sensor-data gathered by the GODESS in the Godland Basin. Due to the highly sophis-
ticated analysis, a simplified reference model was developed to illustrate the transformation. Furthermore,
an exemplary data model was constructed to represent the broad variety of semi-structured data that is
applied in the project at the IOW.

Based on the gathered data and the Matlab scripts it was analyzed which functionalities are included in
the performed Matlab analysis. Thereby, ten basic functionalities were found. Out of these functionali-
ties, two examples were included in the reference model. This involved sorting and polynomial evaluation
for computing conductivity. The functionalities were transformed to various database systems. Based on
the latest state of art and the data properties, three individual databases were chosen. As a relational
DBMS, PostgreSQL has been picked. Furthermore, two non-relational databases were chosen. This
includes Apache’s Cassandra as column store and MongoDB as a representative instance for document
stores.

Although each database system relies on a different data model and therefore different techniques of
implementation needed to be realized, all databases basically produced the same input as the reference
model. Thereby, NoSQL databases performed faster than relational databases and databases applying
UDFs performed slower than other databases. Generally, it could be shown that no database is capable
to transform the entirety of perform Matlab functionalities on its own, but relational databases seem to
cover most functionalities out of all databases considered.

Therefore, it is recommended to launch a holistic approach that combines the benefits of both Mat-
lab and relational databases. The approach should store the data on a database server and perform all
functionalities that can be transformed with reasonable effort on a database level. Other functionali-
ties causing too extensive effort such as multiple linear regression and the plotting of scientific graphs
should be exported to Matlab. This will reduce memory usage at the one side but keep efficiency on the
other side. Furthermore, further research needs to be done on how strongly specialized architectures like
statistical methods and array storage or dynamic schemata like provided by NoSQL databases can be
transformed to relational databases in order to make these databases catch up on the recent needs of the
digitized world.
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This Bachelor Thesis will be submitted together with a flash drive containing the following contents:

• The Bachelor Thesis as PDF-File

• The Bachelor Thesis as LATEX-Directory

• An alphabetical List of PDF-Files of the used References with their used Acronyms

• The used Source-Code

(1) The Matlab-Script

(2) The SQL-Code

(3) The CQL-Code

(4) The MQL-Code

• The Original Matlab-Scripts

(a) The Main Script

(b) The Script for Calculating Practical Salinity

(c) The Script for Calculating Absolute Salinity

• The Original Data

(a) The CTD-File

(b) The TriOS-File

(c) The Nortek-File

(d) The Metadata-File
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