
Conceptual XML Schema Evolution

� the CoDEX approach for Design and Redesign

Meike Klettke

University of Greifswald, Germany
meike.klettke@uni-greifswald.de

Abstract. Most available approaches for XML schema evolution spec-
ify the evolution steps for an XML schema or a DTD. This article will
show that schema evolution can also be realized on a conceptual model.
Schema evolution always requires propagating the changes to the XML
documents that are already associated to the schema. This article sug-
gests a method for conceptual schema evolution concerning all these
subtasks. It is implemented in a tool called CoDEX (Conceptual Design
and Evolution of XML schemas).

1 Introduction

"Software aging will occur in all successful product." (David Parnas, [22]).
Parnas gives two (very di�erent) reasons for software aging. The �rst is caused

by the failure of the product's owners to modify it to meet changing needs; the
second is the result of the changes that are made [22].

We have to consider that all data which are represented in XML documents
also ages and have to be updated from time to time. Nowadays, lots of applica-
tions use XML for storing information. Accordingly, the necessity for updating
XML documents will increase in the next years. Thereby, not only the content
of the XML documents but also the structure underlies changes. Changes of the
content can be realized by using update languages. Some XML update languages
were already suggested, for instance from Tatarinov, et al. [28] and from Patrick
Lehti [13]. Several XML database systems can realize updates on XML docu-
ments, for instance Tamino, Galax and Oracle. In January 2006, the W3C also
suggested an XML update language [3].

Much more complicated than updates of XML documents are schema changes
� this process is called schema evolution. Schema evolution means that the
schema is modi�ed and the XML documents associated to the schema have to
be adapted. We need a method for evolution that is easy-to-handle and ensures
schema-validity of the XML documents after the evolution.

There exist some approaches that use a language or transformation rules
working on a DTD or on an XML schema. For using it, a user needs knowledge
about the evolution language as well as detailed knowledge about the syntax of
his XML schema.

Conceptual models are used for designing new schemas. In this article, a
method for XML schema evolution is suggested that base on a conceptual model



and is implemented as part of a design tool CoDEX (=Conceptual Design and
Evolution of XML schemas). The design steps in a graphical editor are translated
to XML schema evolution steps. The schema evolution is realized and the XML
documents associated to the schema are revalidated and if necessary updated.
The whole process is represented in this article.

The structure of the paper follows this order. First, related work and similar
approaches are enumerated. An overview of the CoDEX approach is given in
section 3. The conceptual model is introduced in section 4. Section 5 represents
the conceptual schema evolution and its subtasks in detail. It is also shown
how XML documents are adapted onto the schema changes. Section 6 contains
a complete example for the evolution process. The article summarizes with a
conclusion and remarks about future work.

2 Related work

Schema evolution on conceptual models. Although the idea of realizing schema
evolution on a conceptual model is quite obviously there exist only a few pub-
lications about that topic. An overview article of Olivé [20] about information
systems formulates the demand for such a method. For database design this
approach is suggested from Hick and Hainaut in [7]. In these articles, a schema
evolution based on the conceptual level of a database was developed, the changes
of the user are propagated to the logical and physical level. This approach was
implemented as part of the database design tool DB-MAIN. To the best of
my knowledge there is only one article suggesting a similar idea for XML (by
Dominguez, Lloret, Rubio, and Zapata [5]). In this article UML is used as con-
ceptual model and the schema evolution and document adaptation are realized
by using XSLT programs.

Schema evolution on DTDs or XML schemas. There exist some approaches that
can handle an XML schema evolution. These approaches developed languages
for describing evolution steps on an XML schema or on a DTD. Kramer and
Rundensteiner [27, 11] suggest an XML Evolution Management and develop
a language for schema evolution and realize changes on the DTD and XML
documents.

Another approach for XML schema evolution on DTDs or XML schemas is
developed from Guerrini, Mesiti, and Rossi [6, 18]. They assume the schema as
a graph. Labels in the tree can represent three di�erent states: i) a node has
to be changed, ii) no changes are needed or iii) changes maybe necessary. This
labelled tree is used for an e�cient revalidation of the XML documents and for
updating the documents.

The incremental validation of XML documents is necessary for schema evo-
lution. There are some publications that concentrate on this task. Incremental
schema validation after updates was developed from Milo, Suciu and Vianu [19]
and from Papakonstantinou and Vianu [21].

Nowadays, most available XML database systems don't support schema evo-
lution. An exception is the XML storage solution of Oracle 10g that integrates a



simple support for XML schema evolution. The user has to input the new schema
and an XSLT script that generates new updated XML documents. Tamino sup-
ports schema evolution as follows: all associated XML documents have to be
schema-valid according to the new schema. So, schema relaxations are possible.

Conceptual models for XML design. There are several suggestions of the con-
ceptual model for designing XML schemas or DTDs. Several approaches intro-
duce extension of the ER model to design DTDs or XML schemas, for instance
[15, 17, 23, 25, 12]. Some approaches base on UML class diagrams and add
special extensions, for example ([2, 8, 4, 24, 1].

3 Overview

Figure 1 shows the subtasks that are involved in the CoDEX approach. The
CoDEX tool bases on a graphical model [26]. The focus during the development
of the approach was the evolution of existing schemas, but the CoDEX tool can
also be used for the design of new XML schemas.

adjustment

Fig. 1. Subtasks of the CoDEX tool, �gure from [26]

For design of new applications the following processes are necessary:

� graphical modeling: The user can specify the schema with the conceptual
model.



� consistency check and correction: Completeness and correctness of the con-
ceptual model is checked.

� export: An XML schema according to the conceptual model is generated.

These subtasks are explained in section 4 more detailled.

For schema evolution with the tool the following processes are needed:

� graphical modeling: The user can specify his changes on the conceptual
model.

� logging: All design decisions are logged and summarized as far as possible if
the same objects had been changed several times.

� XML schema evolution: The XML schema is changed according to the schema
evolution steps.

� XML document update: The associated XML documents are updated accord-
ing to the XML schema evolution steps.

Schema evolution can be done on an available conceptual model. It is also
possible to apply the approach for a given XML schema. In that case, the redesign
process starts with a reverse-engineering, consisting of two additional tasks:

� adjustment of an XML schema: A given XML schema is "normalized". The
schema is translated into the venetian blind design style. All information
are presented as global type de�nitions. This process can be done for each
schema. In some cases, (arti�cial) type names have to be added. These type
names do not in�uence the associated XML documents of a schema.

� import: The CoDEX model for the given XML schema and its normalized
representation is generated.

All these subtasks are part of the CoDEX tool and are now shortly described.

4 Conceptual model

The basic components of the conceptual model are elements, types, groups, and
modules. The underlying formal model is a graph, the basic components are rep-
resented as nodes. We use a mixed graph [29] because connections between the
basic components can be directed or undirected. Additional information of the
components is stored in properties, which are simple key-value pairs. For reading
and editing properties there exists a table with the corresponding properties for
each component.

Figure 2 shows a section of the conceptual model for the data of a wind
energy plant (wep) which is used as running example in this article.



Fig. 2. Conceptual model of a wind energy plant (wep)

Consistency check and corrections on the conceptual model The conceptual
models can be checked whether it is complete and correct. Some extension of a
design can be added automatically, for instance we can associate default simple
types to the elements. If no group entity for the child elements of a complex
type is given then a sequence is added as default. The automatic extensions are
similar to the idea of model-driven design.

In other cases, correctness can be tested but no automatic extensions or
corrections are possible. For instance, if a group entity is root element in the
conceptual model (that is not allowed in XML schema), an algorithm can detect
this case but cannot solve it. User interaction is necessary for correction.

Export (translation to XML schema) Conceptual models that are correct and
complete can be translated into an XML schema. For the running example in
�gure 2 the following XML schema is generated:

<xs:complexType name="wep" id="cdx_0002">
<xs:sequence id="cdx_0004">

<xs:element name="location" type="location" id="cdx_0006"/>
<xs:element name="connection-data" type="connection-data"

id="cdx_0027"/>
<xs:element name="wep-data" type="wep-data" id="cdx_0115"/>
<xs:element name="owner" type="owner" id="cdx_0047"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="location" id="cdx_0007">

<xs:choice id="cdx_0008">
<xs:element name="coordinates" type="xs:string" id="cdx_0023"/>



<xs:element name="address" type="address" id="cdx_0063"/>
</xs:choice>

</xs:complexType> ...

The resulting XML schema always follows the Venetian blind design style [16]
that means all information are de�ned as global types and element declarations
use these type information.

Import (translation of an XML schema into the CoDEX model) The import
of available XML schemas into the CoDEX tool is also possible. This import
facility is the prerequisite for evolving existing XML document collections with
the CoDEX approach.

5 Schema evolution

In this section, we focus on schema evolutions that a user can describe with edit
operations on the conceptual model. Figure 3 shows the subtasks of the approach
that are related with the schema evolution, these subtasks are described below.

XML schema
Version i

XML schema
version i+1

CoDEX model
version i

CoDEX model
version i+1

Design 
steps

schema evolution
steps:
add, delete, move, …

XML documents XML documents

minimized design steps:
add_entity, delete_edge, 
move_module, .. 

i)

ii)

iii)

iv)

Fig. 3. Overview on the XML schema evolution process in CoDEX

i) Operations on the conceptual model/ Logging component For each component
of the conceptual model, the operations add, delete, change, and move can
occur in an evolution process. For elements and modules also the operation
rename exists. All design steps of the user are logged in a history component.
The logging component entails for each user interaction all information that
was changed, so that all information needed for XML schema evolution can be
derived from the log�le.



ii) Minimization and normalization of the operations Before the XML schema
evolution steps are derived from the design steps a minimization of the number
of steps takes place. It is necessary because design is never a straight-forward
process. It is often iteratively done, a user frequently changes or cancels design
decision during this process.

For instance, if a user creates a new element wep and renames it during the
design process to wind-energy-plant then it has obviously the same meaning
as creating a new element with the name wind-energy-plant. A rule can be
given that summarizes both operations:

create_element(id, name, content) + rename_element(id, name, name') �!
create_element(id, name', content)

Other rules remove objects that existed only temporary that menas that had
been added and deleted in one design process cycle. In summary, there are 53
rules for combining of evolution steps ([9]). None of the rules is complicated,
they all summarize operations concerning the same objects.

iii) XML Schema evolution steps The minimized set of changes on a concep-
tual model is translated in XML schema evolution steps. The schema evolution
steps change the XML schema according to the changes that a user made on a
conceptual model. For specifying schema evolution steps an own language was
developed [30]. This language bases on an API for accessing XML schemas [14],
that supports reading of XML schema components. It was extended so that also
modi�cations of the schema components are allowed. Examples of this language
follow in section 6.

iv) XML Document Update If we change an XML schema then it is possible that
the XML documents associated to the schema aren't valid any longer. Therefore,
we have to check and if necessary to update the XML documents. For that, a
corresponding update operation for the associated XML documents is executed.
The update operations are augmented with all conditions that are tested for
revalidation.

In that way, the evolution of XML schema also causes and realizes a document
adaptation. The operation for updating the XML documents can be processed
with all available XML update languages, for instance with [3]. Examples are
shown in section 6.

6 Example

Let us assume the following changes on the running example: Simply speaking
we are going to move all attributes from the element wep-data to the element
wep. Second, we delete the now unnecessary element wep-data.

These modi�cations are stored in the log �le:



<connectionReconnected id="cdx_0040" oldSource="cdx_0010"
oldTarget="cdx_0022" source="cdx_0014"
target="cdx_0022">

<entityDeleted id="cdx_0010">

We can create the following XML schema evolution steps:

move "/wep/typedefinition::wep-data/@*" into "../typedefinition::wep"
delete select "/wep/wep-data"

Based on these statements XML update operations are generated:

do insert /wep/wep-data/@* into ..
do delete /wep/wep-data/@*
do delete /wep/wep-data

This example shows the complete process from the edit operations in the graph-
ical editor to the schema evolution and XML document update. Although this
example is a quite simple evolution step and contains only two operations the
method can also be applied for more complex changes.

7 Limits of the conceptual schema evolution

There is only one case where the approach fails: This case shall be explained with
an example. The operation move on a schema normally entail a move operation
in the XML documents. Our running example demonstrated this case.

If we assume another evolution step: we move the address from the element
owner to the element producer, we cannot move the values because the address
of the owner is normally not the address of the producer.

The elements address (of owner and producer) have the same structure
but the values are di�erent. Such cases cannot automatically be found. This is
an open problem: how to detect the cases in which the semantics of the struc-
turally identical components changes by realizing a move operation because of
the context information.

This problem is not speci�c for the CoDEX approach but it occurs in all
schema evolution approaches. The only reasonable way is user interaction for
solving this problem. A possible solution could be two o�er two di�erent edit
operations: move with data and move without the associated data.

8 Summary

XML Schema evolution is one of the future research �elds. All applications that
are used over longer periods of time sometimes have to be evolved and adapted
onto new requirements.

With the CoDEX tool, schema evolution can be realized with the same con-
ceptual model that is used for designing new applications. It is not necessary
that a user speci�es the schema evolution steps directly on the XML schema



syntax. During editing the conceptual model he can specify the changes, so that
we achieve an easy-understandable, user-friendly approach for maintenance of
XML applications. Based on the changes the XML documents associated to the
schema are updated, too.

This method can realize evolution steps that modify elements or attributes.
It is not possible to modify parts of the XML documents with higher granularity.
For instance, we cannot split an element content into two elements or add the
values of two attributes to a new attribute value. Edit operations on a conceptual
model cannot describe such changes. If such evolution steps are necessary, than
additionally other tools have to be employed, for instance several mapping tools
o�er this functionality. They support manual customization on the level of XML
documents.

Mapping and matching approaches derive di�erences between the new and
the old schema. Based on these di�erences, updates for the XML documents can
be realized. Matching approaches use heuristics for determining similarities and
accordingly the results can be incorrect. During schema evolution it is possible
to log the operation of a user, this information is more reliable for adapting the
schema and the XML documents. That is the reason why this article suggests
an extension of a design method for evolution instead of automatic matching
approaches.

The CoDEX model editor is implemented in Java as plug-in for the open-
source IDE Eclipse. Di�erent Eclipse concepts like properties, preferences, prob-
lem markers are used. The schema evolution and document update are imple-
mented on the basis of eXist and base on the update language o�ered in that
system. In future, the implementation shall be realized with the update language
of the W3C. For that the update statements are additionally generated in this
language yet.

9 Future work

A future plan is the integration of a function that calculates the e�ort of each
evolution step before it is realized. This function shall determine which parts of
the schema are concerned and how many XML documents will be changed by
an evolution step.

All parts described in this article are implemented but till now not completely
integrated. That is also one of the future tasks on that �eld.

10 Acknowledgement

I want to thank my students Robert Stephan, Tobias Tiedt, Marcus Oertel,
Christian Will, and Maike Milling for their work that they investigated with
their diploma or study theses on this topic very much.



References

[1] M. Bernauer, G. Kappel, and G. Kramler. Representing XML Schema in UML
- A Comparison of Approaches. In N. Koch, P. Fraternali, and M. Wirsing,
editors, ICWE, volume 3140 of Lecture Notes in Computer Science, pages 440�
444. Springer, 2004.

[2] D. Carlson. Modeling XML Applications with UML: Practical e-Business Appli-
cations. Addison-Wesley Object Technology Series, 2001.

[3] D. Chamberlin, D. Florescu, and J. Robie. XQuery Update Facility, 2006.
http://www.w3.org/TR/xqupdate/.

[4] R. Conrad, D. Sche�ner, and J.-C. Freytag. XML Conceptual Modelling using
UML. In A. H. F. Laender, S. W. Liddle, and V. C. Storey, editors, Proceedings
of the 19th International Conference on Conceptual Modeling, ER, Lecture Notes
in Computer Science 1920. Springer, 2000.

[5] E. Dominguez, J. Lloret, A. L. Rubio, and M. A. Zapata. Evolving XML Schemas
and Documents Using UML Class Diagrams. In Database and Expert Systems
Applications: 16th International Conference, DEXA, Lecture Notes in Computer
Science, volume 3588, pages 343�352. Springer Berlin / Heidelberg, 2005.

[6] G. Guerrini, M. Mesiti, and D. Rossi. Impact of XML schema evolution on valid
documents. In A. Bonifati and D. Lee, editors, WIDM, pages 39�44. ACM, 2005.

[7] J.-M. Hick and J.-L. Hainaut. Strategy for Database Application Evolution: The
DB-MAIN Approach. In Conceptual Modeling - ER, volume 2813 of Lecture Notes
in Computer Science, pages 291 � 306. Springer, 2003.

[8] G. Kappel, E. Kapsammer, S. Rausch-Schott, and W. Retschitzegger. X-Ray �
Towards Integrating XML and Relational Database Systems. In A. H. F. Laender,
S. W. Liddle, and V. C. Storey, editors, Proceedings of the 19th International Con-
ference on Conceptual Modeling, ER, Lecture Notes in Computer Science 1920,
pages 339�353. Springer, 2000.

[9] M. Klettke. Modellierung, Bewertung und Evolution von XML-
Dokumentkollektionen, 2006. eingereicht an der Universität Rostock, Fakultät
für Informatik und Elektrotechnik.

[10] M. Klettke, H. Meyer, and B. Hänsel. Evolution � The Other Side of the XML
Update Coin. In 2nd International Workshop on XML Schema and Data Man-
agement (XSDM), in conjunction with ICDE, 2005.

[11] D. Kramer. XEM: XML Evolution Management. Master's thesis, Worchester
Polytechnic Institute, 2001.

[12] M.-L. Lee, S. Y. Lee, T. W. Ling, G. Dobbie, and L. A. Kalinichenko. Designing
semistructured databases: A conceptual approach. In H. C. Mayr, J. Lazanský,
G. Quirchmayr, and P. Vogel, editors, DEXA, volume 2113 of Lecture Notes in
Computer Science, pages 12�21. Springer, 2001.

[13] P. Lehti. Design and Implementation of a Data Manipulation Processore for an
XML Query Language. Diplomarbeit, Technische Universität Darmstadt, Fach-
bereich Elektrotechnik und Informationstechnik, 2001.

[14] E. Litani. XML Schema API, 2004. http://www.w3.org/Submission/xmlschema-
api/.

[15] B. F. Lóscio, A. C. Salgado, and L. do Rêgo Galvão. Conceptual modeling of
XML schemas. In R. H. L. Chiang, A. H. F. Laender, and E.-P. Lim, editors,
WIDM, pages 102�105. ACM, 2003.

[16] E. Maler. Schema Design Rules for UBL ... and Maybe
for You. In XML conference and exposition, 2002.



http://www.idealliance.org/papers/xml02/dx_xml02/papers/05-01-02/05-
01-02.html.

[17] M. Mani. EReX: A Conceptual Model for XML. In Z. Bellahséne, T. Milo,
M. Rys, D. Suciu, and R. Unland, editors, Database and XML Technologies: Sec-
ond International XML Database Symposium, XSym, volume 3186, pages 128�142.
Springer-Verlag, 2004.

[18] M. Mesiti, R. Celle, M. A. Sorrenti, and G. Guerrini. X-Evolution: A System for
XML Schema Evolution and Document Adaptation. In International Conference
on Extending Database Theory (EDBT), Demonstration, 2006.

[19] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML Transformers. In Pro-
ceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pages 11�22, Dallas, Texas, USA, 2000. ACM.

[20] A. Olivé. Conceptual Schema-Centric Development: A Grand Challenge for In-
formation Systems Research. In O. Pastor and J. F. e Cunha, editors, CAiSE,
volume 3520 of Lecture Notes in Computer Science, pages 1�15. Springer, 2005.

[21] Y. Papakonstantinou and V. Vianu. Incremental Validation of XML Documents.
In D. Calvanese, M. Lenzerini, and R. Motwani, editors, Proceedings of the Inter-
national Conference on Database Theory (ICDT), volume 2572 of Lecture Notes
in Computer Science, pages 47�63, Siena, Italy, 2002. Springer-Verlag.

[22] D. L. Parnas. Software Aging. In ICSE: Proceedings of the 16th international
conference on Software engineering, pages 279�287, Los Alamitos, CA, USA, 1994.
IEEE Computer Society Press.

[23] K. Passi, L. Lane, S. K. Madria, B. C. Sakamuri, M. K. Mohania, and S. S.
Bhowmick. A Model for XML Schema Integration. In K. Bauknecht, A. M. Tjoa,
and G. Quirchmayr, editors, EC-Web, volume 2455 of Lecture Notes in Computer
Science, pages 193�202. Springer, 2002.

[24] N. Routledge, L. Bird, and A. Goodchild. UML and XML-Schema. In Thirteenth
Australasian Database Conference, 2002.

[25] A. Sengupta, S. Mohan, and R. Doshi. Extensible Entity Relationship Modeling.
In XML, 2003. www.idealliance.org/papers/dx_xml03/papers/06-01-01/06-01-
01.html.

[26] R. Stephan. Entwicklung und Implementierung einer Methode zum konzeptuellen
Entwurf von XML-Schemata. Diplomarbeit, Universität Rostock, Institut für
Informatik, 2006.

[27] H. Su, D. K. Kramer, and E. A. Rundensteiner. XEM: XML Evolution Manage-
ment. Computer Science Technical Report Series, Worchester Polytechnic Insti-
tute, WPI-CS-TR-02-09, Jan. 2002.

[28] I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld. Updating XML. In
Proceedings of the ACM SIGMOD International Conference on Management of
Data, 2001.

[29] E. Wanke and R. Kötter. Oriented Paths in Mixed Graphs. In R. Fleischer and
G. Trippen, editors, ISAAC, volume 3341 of Lecture Notes in Computer Science,
pages 629�643. Springer, 2004.

[30] C. Will. Entwicklung und Implementierung einer Sprache zur Evolution von XML-
Schemata. Diplomarbeit, Universität Rostock, Institut für Informatik, 2006.


