
Enhancing Workflow Data Interaction Patterns
by a Transaction Model

Sebastian Schick, Holger Meyer, and Andreas Heuer

Database Research Group
University of Rostock

{schick,hme,heuer}@informatik.uni-rostock.de

Abstract. Todays process-aware information systems (PAIS) provide
little support for explicit specification of transactional aspects. PAIS
have to integrate events and data from various external sources as work-
flow relevant data. Furthermore, it should be aware of changes made
externally and write consistently back data used and altered to external
sources. To avoid inconsistencies within redundantly maintained data,
transactional aspects within process and data perspective have to be
supported. We present a layered architecture which overcomes most of
these problems by extending a workflow management system (YAWL)
with facilities to access external data sources, to associate the control
flow perspective with transactional properties like isolation, serializabil-
ity and recovery. To ensure a better data integrity, we define synchroniza-
tion strategies and integrity constraints beyond single objects and tasks.
Furthermore, we integrate transactional and non-transactional sources
to offer better data security, data persistence and data recovery within
our workflow model.

Keywords: Data access; Integrity constraints; Transactional workflows;
YAWL

1 Introduction

In Process-Aware Information Systems the integration of external data sources is
still a challenging problem. This drives many ongoing initiatives to improve data
integration within workflow systems. In the Perikles project1 [3] we build a PAIS
supporting the operating room (OR) manager in large clinical, peri-operative
centers. The system is driven by events like information from different sources
e.g. patient record or clinical information system. The workflow system has to
integrate events and data from external sources as workflow relevant data to
keep track of the different ORs’ status, from scheduling an OR until the patient
leaves the peri-operative center or the hospital. In clinical environments usually
the operating room (OR) is the facility with the highest costs and revenues.

Generally the perioperative process can be divided into three sub-processes
pre-, intra- and postoperative process, indicating the phases before, during, and

1 www.perikles.org

2 S. Schick, H. Meyer, and A. Heuer

Consultation

Preperation Operation Postprocessing Recovery roomCheck-In Ward

more Diagnostic

Preadmission Preoperative Intraoperative Postoperative

Resuscitation Room

ICU

PACU

decision
for

surgery

Ward

Intensive
care unit

(ICU)

Emergency

Fig. 1. Perioperative Process at a Glance

after the surgery (cf. Fig. 1). On the whole, the complete surgery-related business
processes must be well managed and scheduled in order to be cost-efficient while
at the same time meeting the patients expectations of timely service delivery.
These challenges call for a supporting system that is process-oriented, resource-
centric, and schedule-aware.

Since the data in the external sources, like in the clinical information system
or patient record management systems, is altered independently from being used
within PAIS, the workflow system should be aware of changes made externally
and write consistently back data used and altered to external sources. Further-
more, the data has to be mapped from external systems to workflow internal
data, i.e. onto workflow variables. By this, activities can make use of data from
external sources without arranging the access by itself.

In case of Perikles data source integration of several heterogeneous systems
leads to various problems. Current systems allow explicit data integration only
when executing a task and its related application function [14]. The missing re-
lation between application data and workflow relevant data, therefore, has to
be modeled in an appropriate way. Approaches like [6] propose an extension to
current systems using plug-ins. Nevertheless, issues like global consistency or iso-
lation where not discussed. The access to external data from within the workflow
system is addressed by some of the workflow data patterns [20], namely Pattern
15, 16, and 19, 20. Within the data-based routing, different kinds of data condi-
tions are evaluated within the control flow perspective. But the approach does
not define any data integrity constraints or isolation properties for external data.
This is left to the control-flow view. Only few systems partially implement them,
none fully. The YAWL engine can handle some of the state-based conditions (e.g.
case initiation, case completion).

To avoid inconsistencies within redundantly maintained data, transactional
aspects within the control flow and data perspective have to be supported. Conse-
quently, transactional properties like consistency, isolation, durability, reliability,
robustness, and correctness have to be provided by PAIS.

However, many PAIS provide little support for explicit specification of trans-
actional aspects. In the course of database research many advanced transactions
models were proposed, investigated, and developed further [8]. Many approaches

Enhancing Workflow Data Interaction Patterns 3

[22, 5, 12, 13] have tried to combine concepts from both, workflow and trans-
actional systems. Grefen [10] presents a taxonomy of combining transactional
systems with workflow engines and positioned existing approaches. However,
transactional properties are desired in PAIS, too. Therefore, transactional types
have to be integrated within the control flow perspective. Process parts, apart
from atomic tasks should be atomic and isolated building blocks. Another re-
quirement is to define integrity constraints over process parts rather than single
task parameters.

We present an approach, which allows for a synchronized, consistency-aware
access to data of external sources. Therefore, we extend the workflow language
YAWL [1] with the concepts, to model nested transactions and ease the task
implementors access to external data sources within the control flow perspec-
tive. To ensure a better data integrity, we define synchronization strategies and
integrity constraints beyond single objects and tasks. Furthermore, we integrate
transactional and non transactional sources to offer better data security, data
persistence and data recovery within our workflow model. Besides the data flow
described in the workflow model [21] also the data source integration is described
in more detail. According to the taxonomy in [10], our approach refers to the
class of transactional workflows. In that way, our approach is different from oth-
ers, which manage and orchestrate long running transactions across different
coordinated web services but did not support and control data access within the
web service or task implementation [17].

We end with the essence of requirements for transactional workflow support:

– Req. 1: There is a urgent need for transparent access to external data sources
from within the workflow systems.

– Req. 2: The workflow system should manage and control external data
sources and allow access through workflow variables.

– Req. 3: Workflow activities/tasks should access external data through (ex-
ternally bound) workflow variables.

– Req. 4: The workflow system should allow for defining transactional spheres
and inherently support them.

– Req. 5: Transactional spheres should assure integrity, correctness, and recov-
erability over externally bound workflow data.

– Req. 6: The workflow system should support integrity constraint over work-
flow variables, (even if they are bound to external data sources).

– Req. 7: The workflow system should offer suitable integrity violation and
exception handling mechanisms in combination with transactional spheres.

2 Related Work

In the course of time, many advanced transaction models were introduced. They
relax certain properties of the classical ACID transaction like isolation or allow
for nested transactions and different kind of structures within a global transac-
tion. We build our concept mainly upon open nested and multi-layered trans-
actions [4] and used multi-version concurrency [16] control for coping with the

4 S. Schick, H. Meyer, and A. Heuer

recoverability problem of open nested transactions. The idea of non-vital, con-
tingent, and compensating transactions as alternative building blocks to atomic
ACID transactions are described in detail in [8, 23].

Different approaches in integration transactions and workflows are investi-
gated for the last 20 years. Worah and Sheth [24] and Grefen [10] gave a overview
on different integration concepts and systems for transactional workflows. The
latter suggests a taxonomy for a conceptual and system view on the topic. Grefen
et al investigated different dependencies of transactional building blocks within
a workflow [11]. They present also a formal transaction model based on graph
theory. Long-running transaction are used in [17] and a pervasive workflow ap-
proach is presented in [15]. Long running workflows, Sagas [9] and their exten-
sions give up isolation and have to cope with recoverability. That’s why, they
have introduced compensating transaction.

A better data integration within PAIS is tackled by different approaches.
In [14, 18] the aspect of a close integration of the data control flow perspective
where described. One main demand in [14, 18] are compliant business processes
with the underlying data structures. Hence, different challenges where defined
to summarize Object-aware Process Management Systems [14]. One requirement
is the integration of application data within the control flow perspective, so that
data is manageable and accessible as complex objects. A generic component
for process management is proposed there, which enables data-driven processes.
Therefore, an integrated view on the process and the data is introduced. How-
ever, the data exchange with external data sources is not tackled. Neither aspects
regarding data source integration nor the combination with transactional models
are discussed.

In [6, 7] Lehmann and Eder present a comprehensive approach for integrating
external data sources. This approach describes an architecture in a way very
similar to ours, e.g. the integration of external data sources into the control flow
perspective is based on XML, too. The integration is also done using data access
plug-ins which are controlled by a data management service. But the approach
just considers data integrity constrains on single variables (data sources). Read
and write operations on data sources are under control of user defined policies
as isolation or correctness of the data access do. Consequently, the approach
didn’t support any kind of global integrity constraints or transactional concepts
required to avoid inconsistencies within redundantly maintained data.

3 Transactional Workflows — The Concepts of tx+YAWL

Now, we present a conceptual extension of the workflow system YAWL [1] called
tx+YAWL. It combines the integration of external data sources into the workflow
systems with transactional properties. The transactional model provided is based
on open nested transaction. In fact we exploit the multi-layered transaction
approach [4]. It allows for structuring different operations on different layers and
providing mappings between two consecutive layers. The transaction concept also
make use of multi-version concurrency control [16] to cope with recoverability

Enhancing Workflow Data Interaction Patterns 5

tx+YAWL primitives

B

A
C

H

F G

I

x y x z

T1: {c1,c2}
D

-1

E3

c

AND-join

AND-split

XOR-split

XOR-join

Atomic task

Input condition

Output condition

external outputexternal input

x

Ek

c

contingent
transaction

D
-1

compensation
transaction

Ti:c1..cn

transactional
sphere

Fig. 2. Transactional workflow with sub-transactions and constraints

by providing a consistent view on versions of database objects and avoiding
cascading aborts. The approach is structured into four different layers:

– Layer L0 is responsible for accessing external data source through workflow
variable. The externally managed data can be described by XML Schema
types and by views established on XML instances using XQuery. (Req. 1 and
Req. 3)

– On Layer L1 workflow tasks are the transaction building blocks. They pro-
vide the basis for different transaction types, like contingent, compensating,
or non-vital (sub-)transactions. (Req. 1, Req. 3 and Req. 7)

– Layer L2 describes the overall control flow and transactional spheres. In-
tegrity constraints, consistency, and recoverability are provides at this layer.
(Req. 2 and Req. 4-7)

– Layer L3 associates workflow cases with the top level transactional sphere
or global transaction. (Req. 4)

Figure 2 presents a transactional workflow net as described by the tx+YAWL
workflow language. The workflow consists of nine workflow tasks (A, . . . , I). Task
A contains an AND-split and tasks I the corresponding AND-join. The two
branches consist of a sequence F,G and a sub-structure building a transactional
sphere 2 T1. The sphere T1 encompasses tasks which access external data through
input/output variables x, y, z and integrity constraints {c1, c2} to be ensured for
this sphere. All tasks within a sphere are part of a transaction. Some may be sub-
transactions with an associated type. Task D represents a sub-transaction with
compensation and E consists of three contingent sub-transactions E1, E2, and
E3. Only one out of this three sub-transactions must succeed to let E commit.
All other tasks are steps of the transaction represented by the sphere.

The concepts of transactional workflows and the details of tx+YAWL model
are now explained along the four layers.

Layer L0 (Basic data access) is responsible for the access to data from
external sources through specific plug-ins (denoted by the triangles in Fig. 2).

2 Dashed rectangles are used to depict spheres in Fig. 2.

6 S. Schick, H. Meyer, and A. Heuer

Actually, the basic operations provided are reading a certain version Ti.r(xj),
writing Ti.w(xj) and enforcing a transaction boundary by committing Ti.c(), or
aborting Ti.a() a local transaction at the data source if support. The behavior
of these operations depends on the transactional spheres of Ti and is controlled
by the layers above. A plug-in (referenced by an identifier pId) encapsulates the
data source. The structure of the data is described by a XML Schema XSDpId.
The plug-in is responsible for mapping source specific structures to and from
valid XML data. Additionally, the plug-in provides functionality to establish
a connection, transfer data and exchange service information. In Fig. 2 tasks
B,D,E,H accesses external data using plug-ins connected to variables x, y, z.

Layer L1 (Workflow tasks) describes concepts of tasks as the building
blocks of the transactions. Tasks have input and output parameters, e.g. external
variables x and y are bound to input parameters of task B,D and E, z is bound to
an output parameter of task H in Fig. 2. A task should not directly perform read
and write operations an external data from within the tasks implementation. In
fact, tasks must access external data through its input and output parameters.
Parameters v are described with their own schema XSDv. The Layer L1 is
responsible for associating the these parameters of atomar or complex tasks with
the read and write operations from Layer L0 defined over the external variables
managed by the plug-ins. In case of a composite task, parameters are mapped
from or onto variables of the workflow net implementing the composite task.
The order of read and write operations is assumed to be evaluated from left to
right, i.e. in the order they appear in the parameter list.

To reuse these external variables by different parameters v a mapping be-
tween the related XSDpId and XSDv has to be defined. This is done using an
XQuery expression. A mapping mv consists of a set of (pId, distKey,map, rp, wp),
where

– pId is a reference to a data source which is encapsulated by a plug-in.
– map is an XQuery expression, which defines transformation between an ex-

ternal variable and the data source managed by plug-in pId.
– distKey indicates a distinct key value, to unambiguously identify an XML

fragment in the data source.
– rp defines the local read policy
– wp defines the local write policy

The mapping allows only unique XML fragments as a result of a query. The result
has to be a valid subtype of the data source XSD type (XSDv ⊆ XSDpId).

The read operations on external variables yield values for the input param-
eters of a task. A read policy rp defines whether the external variable has to be
re-read each time it is access or kept isolated from external modification of the
original data. That’s why, different operation modes were proposed. The mode
immediate read requires for each read access a synchronisation with the external
data source. The mode consistent read requires a transactional sphere which
determines the version of data object to be read.

Write operations on external variables values write back values of output pa-
rameters associated with the variable. A write policy wp defines whether modifi-

Enhancing Workflow Data Interaction Patterns 7

cations of a copy have to be pushed by the workflow system to the external data
source immediately or not. Furthermore, the policy is divided into the modes
immediate write, which propagates changes after each update. With mode con-
sistent write the transactional sphere determines whether the operation is can
directly write back a new version of the data object or has to be deferred. The
mode no write simulates a read only variable an can be used by hypothetic or
read-only transactions. In combination with transactional sphere only consistent
readand write modes are used.

At this layer local integrity constraints are defined, managed and checked on
a per variable basis. If integrities are violated exception handling takes place.
Usually, exceptions are handled be rolling back work, executing a compensat-
ing transaction if defined or proceed with another sub-transaction if part of a
contingent transaction.

Layer L2 (Control flow and transactional spheres) describes tasks to-
gether with control flow patterns which are the building blocks of (sub-)transactions
and the control flow perspective of the workflow description. Aside basic sub-
transactions build upon sequences of tasks, we support different transaction
types to cope with diverse application requirements. For example contingent,
non-vital, and compensating (sub-)transactions build upon tasks and appropri-
ate control flow structures. The different types are explained in the following.

Basic transactions Ti have ACID properties and ensure serializability and
recoverability as known from standard database transactions.

Nested transactions Ti allow for composing transactions from different sub-
transactions Ti,j even from other nested transactions.

Contingent transactions TC
i,k are a set of transactions Ti,1 to Ti,k out of

which only one transaction must succeed. Situations where different, alternative
ways of performing a business transaction exist, contingent transactions are the
model of choice. In Fig. 2 the task E represents a set of contingent tasks or
sub-transactions within the transactional sphere. E has three alternative imple-
mentations out of which only one needs to commit for E to be committed.

Non-vital transactions TNV
i may fail. That means the result is an option

but not necessary for the overall success. An abort of non-vital transaction has
no effect on the transactional sphere it is part of. Nevertheless, atomicity has
to be ensured for non-vital transactions, too, i.e. partial results of an aborting
non-vital transaction have to be undone.

Compensated transactions are actually a pair of a ”normal” transaction Ti

and a compensation T−1
i . Normally, the compensation can be done by executing

an inverse transaction which rolls back work. Sometimes in practice, it is impos-
sible to withdraw the real impact of a transaction. Then some kind of sufficient
compensation specified by the application has to be done. Task D in Fig. 2 is
a compensated task which consists of a regular task D and an inverse task or
compensation D−1 which gets executed if D fails.

Read-only transactions are used for some kind of hypothetic transactions.
Changes are just made within the scope of the transaction and kept locally.

8 S. Schick, H. Meyer, and A. Heuer

Table 1. Concepts of tx+YAWL transactional workflows and their YAWL semantics

tx+YAWL Modeling Concept YAWL Representation

T Basic (ACID) transaction T . T

Ti:c1..cn
Transactional sphere Ti and en-
forced set of constraints ci over a
sub-workflow.

Ti

T
c

i1,k

Contingent transaction TC
i,k con-

sisting of a set of sub-transactions
{T1..Tk}. System task S arbitrar-
ily give one sub-transaction after
another a try. If one succeeds, the
contingent transaction commits.

T1

S

Tk

a

a

a

Ti

nv
Non-vital Transaction TNV , sys-
tem task S can decide to give TNV

several tries or do terminate.

S T

a

Ti

-1
Transaction T with compensation
T−1, which is executed if T fails or
gets aborted. T

Ti

a
i
-1

These transactions are not allowed to write results back to the data sources. So,
they use write policy no write.

Non-transactional processing allows to directly work with external data sources.
Read and write operations are unconditionally, immediately executed. The ap-
plication is expected to ascertain integrity in this mode.

Regions of the workflow which are transactional consist of a simple task, a
sequence of simple tasks, or are build upon composite tasks. They are called in
our approach transactional spheres, describing the fact, that they build a sphere
within the flow of control which is under transactional control. In fact they are
based on the open nested transaction concept. Transactional spheres have:

– A transaction type {non-transactional, basic, read-only, non-vital, compen-
sating, contingent}. The different types and their YAWL counterpart are
shown in Table 1.

– A read and a write set of external variables readset(Ti), writeset(Ti)

– A transaction T is a partial order of steps (actions) of the form r(x) or
w(x), where x ∈ readset(Ti) ∪ writeset(Ti) (set of data objects associated
with the external variable) and reads and writes as well as multiple writes
applied to the same object are ordered. We write T = (op,<) for transaction
T with step set op and partial order <. The order of read operations and
write operations for a single task or net is evaluated in the order they appear
in the parameter list of the net or task.

Enhancing Workflow Data Interaction Patterns 9

– The semantics or interpretation of a certain step, pj , of T : If pj = r(x), then
interpretation is assignment vj := x to local variable vj If pj = w(x), then
interpretation is assignment x := fj(vj1, ..., vjk). with anonymous function
fj and j1..jk denoting T ’s prior read steps.

– A set of integrity constraints defined over the external variables.

Constraints (e.g. c1, c2 in Fig. 2) are checked using the XQuery expressions
over workflow variables. Reactions to constraints violations, failures or trans-
action aborts are dictated by exception handling policies and depend on the
transaction type.

The compensation is done by executing an associated compensating or inverse
transaction. A rollback is done for basic (or ACID) transactions. The decision
whether to abort or ignore transaction failures depends on the transaction type
of the current context. If the current transaction is the top-level transactional
sphere, the transaction is aborted, which in turn may cancel the whole case.
Failure within non-vital transaction only result in a local rollback and effect no
upper-level transactions or spheres. In case of contingent transaction, only one
out of the contingent set transactions must succeed, i.e. local aborts a kept local
as far as one sub-transaction succeeds.

Usually, it is assumed that the read and write policies within a transactional
sphere are consistent read and write. Accordingly, outside a transactional sphere
the policies assumed to be immediate read or immediate write. If the user by-
passes these implications, e.g choosing immediate read within a transactional
sphere the isolation property may gets violated. Then, effects of this violation
have to be controlled on the application level.

Layer L3 (Case level and global transactions) is a layer of cases and
associated global transactions. If a global transaction (sphere) fails, exception
handling is done on case level, i.e. it may cause the cancellation of the case.
A case may contain several transactional spheres which are independent with
respect to their semantics but can interfere each other, e.g. if the first global
transaction in a sequence fails and causes the case to be cancelled. The mapping
between L3 and L2 is defined by the composition or nesting of transactional
spheres into a global transaction (sphere) representing the workflow instance or
case.

In the next section we will concentrate on how Layers L0 and L1 are imple-
mented by our Data Access Framework (DAF) within the YAWL engine.

4 Implementing tx+YAWL Concepts with YAWL

To begin with we will explain how to transform tx+YAWL elements into a
compliant YAWL representation. Then, we introduce a Data Access Framework
(DAF) to support operations of Layer L1 and Layer L0. The DAF is an extension
of the YAWL workflow engine. Additionally, the DAF implements transactional
concepts like integrity constraint checking described at Layer L2.

Layer L3 + L2, tx+YAWL modeling concepts are not natively supported
by the YAWL engine. First, these concepts must be transformed into a pure

10 S. Schick, H. Meyer, and A. Heuer

A

F G

I

x z

T1

B

C

H

y x

E

D-1

E1

S

E3

a

a

a

a

E2

D

D
a -1

(a)

(b) (d)

(c)

x

1TSN

ESN

1DSN

Fig. 3. Rewriting tx+YAWL into a YAWL Model

YAWL model. The implementation of Layer L2 is done by utilizing the trans-
formation rules from Table 1.

To exemplify the transformation process, we have applied the rules to the
example from Fig. 2. The result is shown in Fig. 3 (a)–(d): The top-level trans-
action in Fig. 2 is represented using a YAWL root workflow net (cf. Fig. 3 (a)).
We start with applying the rule for a nested transaction on transaction T1. This
results in the corresponding composite task T1 of Fig. 3 (a). Then the composite
task T1 is decomposed into subnet SNT1

, which contains the transactional tasks
B,C,D,E and H of the original transactional region (cf. Fig. 3 (b)). Within
the new subnet SNT1 the compensating task D−1 is transformed into the new
composite task D−1 using the rule for transactions with compensation. The cor-
responding subnet SND−1 is can be seen in Fig. 3 (c). It contains task D and
its compensation D−1. Further on, the contingent transaction E3 is transformed
into composite task E using the rule for contingent transactions. The resulting
subnet SNE contains the three contingent transactions/tasks E1, E2 and E3

and is depicted in subfigure (d). Net variables of a subnet are task variables
of the corresponding composite task in YAWL. Therefore, external variables of
the transactional tasks D−1 and E3 appear as task parameters of the composite
tasks D−1 and E within the subnet SNT1

.

Since integrity constraints are tied to transactional spheres, they may only be
verified if transactions are active. To ensure this, we introduce a data controller
definition which checks constraints for active transactions. A data controller DC
= (E,C, n, t, s) is defined as:

– E is a set of external variables (e1, e2, . . . , en), associated with data sources.

– C is a set of dynamic constrains (c1, c2, . . . , cn) defined on E.

– n is the net the DC belongs to.

– t defines the transaction type of the associated transaction.

– s is the state of the DC with s ∈ {active, inactive, deactivated}.

Enhancing Workflow Data Interaction Patterns 11

The DC belongs to the net n of a transactional sphere, e.g. task T1 in Fig. 3
(a). A DC may not always be active. In YAWL, state transitions are bound to
input and output condition of a net. The initial state s of a DC is inactive. The
DC will be activated if the corresponding sphere or rather a net is activated.
Then a state transition from inactive to activated take place. Respectively, the
DC will be deactivated if the corresponding net will be terminated. However, the
data for the DC is not generated at run time, but when the model is instantiated.

The set of constraints C contains the constraints c1 and c2 in the example
process. Consequently, the set of external variables (E) consists of {x, y, z}. The
transaction type of T1 is basic.

Layer L1, External variables are not supported by YAWL directly. So, the
YAWL engine got extended with the Data Access Framework (DAF) (cf. Fig. 4).
The framework connects external bound YAWL variables with data sources. The
DAF is responsible for transactional concepts like dynamic integrity constraints
described in Layer L2 as well. Now, the DAF components shown in Fig. 4 are
explained in detail.

The Data Gateway (DG) is just a simple interface within the YAWL en-
gine where requests to external variables are catched and forwarded to services
outside the YAWL engine. It simply passes all read and write requests, i.e. op-
erations of Layer L1, to the external Data Source Manager and returns results
to the YAWL engine.

The Data Source Manager (DSM) performs a pre-processing of the
received request to control its further processing. The variable mapping m (cf.
Sec 3) of the external variable is used to select the plug-in which have to be
invoked. To select all required services the read and write policies are extracted
as defined in Layer L1. Also the transaction types and constraints as defined by
a data controller (DC) at Layer L2 are evaluated to configure further processing.

The Data Integration Chain (DIC) combines services to process the
requests. Typical services are Synchronizing Manager (SM), Transaction Manager
(TM) or Recovery Manager (RM). The services have to be deployed at runtime
to provide different configurations. For example, with these configurations TM
and RM are activated only when consistent read or write and recoverability is
required. A service processes the request and passes it on to the next service until

SM TM RM

PM CS CP

Data
Gateway

Y
A

W
L E

ngine

Data Integration Chain

data
sourcemap(L1,L0) L2, L3

Data
Source

Manager

Fig. 4. Data Access Framework Architecture

12 S. Schick, H. Meyer, and A. Heuer

the plug-in at the bottom of the chain is invoked. After the read (xj = Ti.r(x)) or
write (Ti.w(xj)) operation were performed by the plug-in the result will be sent
back to the DG in reverse order through the chain. Finally, the Data Gateway
in turn passes the result back to the YAWL engine.

The Constraint Service (CS) handles all constraints and is activated by
an active DC. The place where constraints are checked, depends on the features
the actual used data source supports. Integrity is checked by the CS itself before
and after invoking a plug-in. Constraints can be also checked by the data source
itself, e.g. using triggers. Nevertheless, the violation has to be catched by the
CS. In [19] different exception types and handling strategies for workflows are
presented as patterns. A pattern describes a threefold plan to react on an ex-
ception. The CS deploys common exception handling features supported by the
YAWL engine, especially it uses the Exlet approach [2]. It can detect and handle
different kinds of process exceptions. This are for example canceling, suspend-
ing, completing, failing and restarting a task, case and/or specifications. Exlets
also can directly specify compensatory tasks which eases the implementation of
compensating transactions.

Layer L0, Uniform data access is provided by plug-ins. The Plug-In
Manager (PM) implements the data access to the data source, which is de-
scribed in Layer L0. It calls an appropriate plug-in after the access to the data
source has been approved by each service in the DIC. Previously, the Connec-
tion Pool service (CP) has instantiated the plug-in using pId extracted from
the variable mapping. The connection pool provides simultaneous data source
access and connection management for plug-ins. This the concurrent access of
data sources established by various process instances easy.

To allow for easy integration of different plug-ins, we have defined a common
plug-in architecture, which is divided into three components: plug-in driver, con-
nection and statement. The plug-in driver implements the interface exactly for
one data source type and will be managed by a plug-in driver manager, which
administer all registered plug-in drivers. The plug-in connection object is a log-
ical connection to the plug-in, which encapsulate all session information needed
by the framework for plug-in communication. If the data source plug-in supports
transactions, the Ti.c() and Ti.a() commands are available here and initiate a
local commit or rollback at the data source. A plug-in statement executes the
read Ti.r(x) and write Ti.w(x) operations itself. It sends the request to the data
source using the plug-in driver, as well as translating the query (map) into the
supported data source language and transforming data accordingly as results get
returned.

The Data Access Framework Prototype implements our approach in
a “proof-of-concept” manner. It is done by a set of Java classes and services
extending the YAWL engine. We extended the YAWL Editor (modeling tool) to
define the mapping between external variables and plug-ins as an XML schema
structure within a YAWL net. Other tx+YAWL modeling concepts are not sup-
ported at the moment.

Enhancing Workflow Data Interaction Patterns 13

The data controllers (DC) are defined as XML schema structures within a
YAWL net. In the Perikles project [3] the prototype was used for integrating and
accessing transactional and non-transactional data sources, e.g. clinical informa-
tions systems. Actually, the DAF supports plug-ins for accessing XML native
stores and HL7 sources common in healthcare environments. So, the YAWL sys-
tem is aware of changes to data made externally. Furthermore, It can also write
consistently back data used and altered in the workflow system to external data
sources. A generic XML-object-relational mapper plug-in is under construction.

5 Summary and Future Work

Supporting access to external data and transactional workflows is still a chal-
lenge. We presented an approach which extents an existing workflow engine and
the corresponding workflow model by adding external data access, integrity con-
straints, exception handling methodology, and a transaction concept based on
multi-layered transactions. In Sec. 4 the architecture of the Data Access Frame-
work and its design rationals were outlined. The framework is based on the
YAWL workflow engine. A prototype implementation is used by a tracking and
OR-management system for peri-operative centres in the Perikles project.

The Data Access Framework can not only be used within our transactional
workflow framework but everywhere were external data access has to be in-
tegrated into a workflow engine, namely YAWL. The Data Access Framework
supports different kinds of update strategies to work with transactional, recov-
erable resources but can deal with non-transactional data stores, too. Data in
external source is wrapped by plug-ins and represented as XML data, which can
manipulated using mapping defined by XPath and XQuery expressions.

Future work will focus on improved design concepts for modeling transac-
tional workflows based on patterns and anti-patterns for the composition of
transactional spheres. For a better understanding of adequate isolation levels
of workflow transaction a detailed analysis of the correspondence of data and
control flow is under way.

Last but not least, we want the YAWL Editor to directly support our model-
ing concepts. The designer should be assisted in defining transactional spheres,
external data mappings and integrity constraints in combination with the control
flow definition. Hence, editor extension techniques will be exploited.

References

1. van der Aalst, W.M.P., ter Hofstede, A.: YAWL: Yet another workflow language.
Information Systems 30(4), 245–275 (2005)

2. Adams, M., ter Hofstede, A., van der Aalst, W., Edmond, D.: Dynamic, Extensible
and Context-Aware Exception Handling for Workflows. In: OTM 2007, LNCS, vol.
4803, pp. 95–112. Springer Berlin / Heidelberg (2007)

3. Bandt, M., Kühn, R., Schick, S., Meyer, H.: Beyond Flexibility – Workflows in
the perioperative Sector of the Healthcare Domain. In: WowKiVS 2011. vol. 37.
Electronic Communications of the EASST (2011)

14 S. Schick, H. Meyer, and A. Heuer

4. Beeri, C., Schek, H.J., Weikum, G.: Multi-Level Transaction Management, Theo-
retical Art or Practical Need? In: EDBT ’88. LNCS, vol. 303, pp. 134–154. Springer
Berlin/Heidelberg, London, UK (1988)

5. Ceri, S., Grefen, P.W.P.J., Sanchez, G.: WIDE: A Distributed Architecture for
Workflow Management. In: RIDE 1997. pp. 76–79 (1997)

6. Eder, J., Lehmann, M.: Synchronizing Copies of External Data in Workflow Man-
agement Systems. In: CAiSE 2005, LNCS, vol. 3520, pp. 248–261. Springer Berlin
/ Heidelberg (2005)

7. Eder, J., Lehmann, M.: Workflow Data Guards. In: OTM 2005, LNCS, vol. 3760,
pp. 502–519. Springer Berlin / Heidelberg (2005)

8. Elmagarmid, A.K.: Database Transaction Models For Advanced Applications.
Morgan Kaufmann, San Mateo, CA (1992)

9. Garcia-Molina, H., Salem, K.: Sagas. In: SIGMOD Conference. pp. 249–259 (1987)
10. Grefen, P.W.P.J.: Transactional Workflows or Workflow Transactions? In: DEXA

2002. LNCS, vol. 2453, pp. 327–349. Springer Berlin/Heidelberg (2002)
11. Grefen, P.W.P.J., Vonk, J., Apers, P.M.G.: Global transaction support for workflow

management systems: from formal specification to practical implementation. The
VLDB Journal 10(4), 316–333 (2001)

12. Grefen, P.W.P.J., de Vries, R.R.: A Reference Architecture for Workflow Manage-
ment Systems. Data and Knowledge Engineering 27(1), 31–57 (1998)

13. Hoffner, Y., Ludwig, H., Grefen, P.W.P.J., Aberer, K.: CrossFlow: integrating
workflow management and electronic commerce. SIGecom Exchanges 2(1), 1–10
(2001)

14. Künzle, V., Reichert, M.: Towards Object-Aware Process Management Systems:
Issues, Challenges, Benefits. In: BMMDS/EMMSAD. pp. 197–210 (2009)

15. Montagut, F., Molva, R., Golega, S.T.: The Pervasive Workflow: A Decentralized
Workflow System Supporting Long-Running Transactions. IEEE Transactions on
Systems, Man, and Cybernetics, Part C 38(3), 319–333 (2008)

16. Muro, S., Kameda, T., Minoura, T.: Multi-version concurrency control scheme for a
database system. Journal of Computer and System Sciences 29(2), 207–224 (1984)

17. Pottinger, S., Mietzner, R., Leymann, F.: Coordinate BPEL Scopes and Processes
by Extending the WS-Business Activity Framework. In: OTM 2007, LNCS, vol.
4803, pp. 336–352. Springer Berlin/Heidelberg (2007)

18. Rinderle, S., Reichert, M.: DataDriven Process Control and Exception Handling
in Process Management Systems. In: CAiSE 2006, LNCS, vol. 4001, pp. 273–287.
Springer Berlin / Heidelberg (2006)

19. Russell, N., van der Aalst, W., ter Hofstede, A.: Workflow Exception Patterns. In:
CAiSE 2006, LNCS, vol. 4001, pp. 288–302. Springer Berlin / Heidelberg (2006)

20. Russell, N., ter Hofstede, A., Edmond, D., van der Aalst, W.: Workflow Data
Patterns: Identification, Representation and Tool Support. In: ER 2005, LNCS,
vol. 3716, pp. 353–368. Springer Berlin / Heidelberg (2005)

21. Sadiq, S., Orlowska, M., Sadiq, W., Foulger, C.: Data flow and validation in work-
flow modelling. In: ADC ’04. pp. 207–214. Australian Computer Society, Inc. (2004)

22. Wächter, H., Reuter, A.: The ConTract Model. In: Database Transaction Models
for Advanced Applications, pp. 219–263. Morgan Kaufmann (1992)

23. Weikum, G., Vossen, G.: Transactional Information Systems: Theory, Algorithms,
and the Practice of Concurrency Control and Recovery. Morgan Kaufmann, San
Francisco, CA, USA (2001)

24. Worah, D., Sheth, A.P.: Transactions in Transactional Workflows. In: Advanced
Transaction Models and Architectures, pp. 3–34. Kluwer (1997)

