
Enabling YAWL to Handle Dynamic Operating
Room Management

Sebastian Schick, Holger Meyer, Markus Bandt, and Andreas Heuer

Database Research Group
University of Rostock

Germany
{schick,hme,mb,heuer}@informatik.uni-rostock.de

Abstract. Clinical workflows are known to be often complex and have
to be handled very flexible due to the patients individual anamnesis
and state of health. Certain situations require urgent changes of the
previously planned process at run time. Some choices to be made in this
context depend very much on the data from clinical backend systems.
Thus, data and processes cannot be treated independently of each other.
We present an approach for flexible, data centric workflows. It extends
the control-flow perspective of a workflow management system with new
concepts for handling process adaption at run-time. The approach com-
bines the method of late modeling with declarative concepts and under-
specification. Due to constraints on data from clinical backend systems,
process adjustment is triggered at certain points of the process and is
then performed at runtime.

Key words: Workflow, Flexibility, Healthcare, Perioperative Process,
Yawl, Flexible Workflow Modeling

1 Introduction

In medical and especially in clinical enviroments the demands not only on in-
creased quality of service but also on better cost efficiency for treatment and
care grows constantly. That’s why resident doctors and hospitals are obliged to
optimize the patient treatment cycle in any possible way. In general a process
aware workflow perspective provides opportunities to improve quality of service
as well as cost efficiency and thus is progressively acknowledged and embraced
by the medical community.

The modelling of patient treatment processes is quite challenging though.
Work in this domain is known to be complex and highly flexible. Independant
ways to work combined with the different skill levels of the staff are hard to quan-
tify and therefore related workflows have to reflect the differences between these
approaches at model level. Beyond that, the patients distinct anamnesis, state
of health and aetiopathology are decisive for the course of action. These aspects
generally are recorded as structured data which can be properly interpreted in
corresponding processes at instance level.

2 S. Schick, H. Meyer, M. Bandt and A. Heuer

A process oriented data model and an adequate communication protocol
within medical environments is the HL7 (Health Level Seven) and CDA (Clinical
document architecture) standards. For example HL7 defines structured messages
for each high level event and each major task connected with patient treatment
and provides a basic structure for clinical documents as well. HL7 compliant in-
tegration of data in clinical workflows is appropriate for proactive data provision
and thus can enhance medical decision support.

Using an example from the perioperative process we introduce an approach
to dynamically adapt the control flow of a process at instance level with respect
to (HL7) data from clinical back-end systems. According to the taxonomy from
[1] this technique can be classified as late modeling combined with declarative
elements and under-specification.

The paper is organized as follows. In Sect. 2 we introduce the perioperative
process and provide a motivating example together with requirements for flex-
ibility in this domain. Then we discuss related work. In Sect. 3, we present a
method for dynamic specification of the perioperative process as well as for the
related composition of flexible process parts. Section 4 describes the transforma-
tion of our intermediate format into the Yawl process language. In Sec. 5 we
illustrate our approach by an example.

2 Flexibility in the Perioperative Process

2.1 The Perikles Project

In the context the Perikles1 project, we analyzed perioperative processes con-
cerning the demands of flexibility and the data flow ([2, 3]). As part of the results
of Perikles the Yawl engine got extended in several ways. A resource data
model has been developed and a corresponding planning service has been imple-
mented as well as a scheduling service for these resources ([4]) and a framework
for improved, transactional access to external data sources.

Fig. 1. Generalized perioperative process (adapted from [5])

1 The Perikles project (http://www.perikles.org/) is partially funded by the Ger-
man Federal Ministry of Education and Research under contract 01IS09009B.

Enabling YAWL to Handle Dynamic Operating Room Management 3

process fragment
X-ray analysis analysis of

r statement

narcosis
plan

haemogram
analysis

angiography
analysis

analysis of
i statement

request
statements

by radiologist

by anesthetist

by internist by anesthetist

by anesthetist

execution
anesth. proc.

surgery

documen-
tation

process management system (YAWL)

ERP

HIS

other
Clinical

Systems

Clinical Backend
Systems

1b

2b

3b

4b

5b

a

b

c
YAWL primitives

OR-joinOR-split Atomic task

Fig. 2. Example fragment of the anaesthesia workflow

In Perikles we extended this scope by the preadmissional timespan like
shown in Fig. 1. However, in this paper we concentrate on the processes on the
day right before the surgical treatment of a patient and the day of the surgery
itself. This includes the preoperative preparation notably the examination of the
patient by an anaesthetist, the preparation of the patient at the preoperative
day and the medication, the transfer to OR area and the anaesthetic preparation
and treatment at the day of the surgery. For simplicity we consider the surgical
treatment as an atomic task. The postoperative period includes the completion
of the narcosis and immediate postoperative care at the Post Anaesthesia Care
Unit (PACU) or at the Intensive Care Unit (ICU). The process shown in Fig.
1 illustrates a patient centered perspective. There is also the need of documen-
tation which includes all diagnostic data, every planned (prescribed) action and
every executed action in the perioperative process.

2.2 Requirements on Flexibility and Data Access

Among other things the results of the requirements analysis in the context of
Perikles showed that several recurring classes of flexibility structures can be
found in these processes.

These are namely partial order (some tasks have to be executed in a spec-
ified order while other tasks can be executed before or after any given task
in the sequence – Requirement 1), optional tasks (Requirement 2), repeti-
tive execution of complex sub-processes (Requirement 3) and alternative tasks
(Requirement 4). In [6] we described the corresponding processes as well as the
identified structures more detailed and presented an implementation approach
using the workflow management system (Wfms) Yawl. Due to space limita-
tions in this paper we will provide just one example which includes several of
the mentioned structures.

In Fig. 2 a fragment of the perioperative process is shown as it was imple-
mented according to guidelines we provided in [6]. The process fragment in the
gray box is implemented in Yawl [7]. The clinical backend systems provide di-
agnostic findings which are accessible e.g. via HL7 compliant interfaces and can
be integrated into the workflow net using the data access extension mentioned

4 S. Schick, H. Meyer, M. Bandt and A. Heuer

in Sec. 2.1. In general the access on external data sources is required to be in-
dependent from underlying systems (Requirement 5) which is ensured by the
extension. In our example though the backend systems are integrated by using
the HL7 standard.

Depending on the individual state of health of a patient several diagnostic
results are needed to be considered at the planning of the anaesthesia. X-ray
pictures (fragment b1) of the chest and haemograms (fragment b2) are manda-
tory while the angiography shown in the picture is an example for an optional
diagnostic examination result (Req. 2). In Fig. 2 the users are in control of the
temporal order in which the three diagnostic results are analyzed. But in case of
X-ray and angiography (fragment b3) the specialists have to make a statement
about the results first before the results are enabled to the anaesthetist so there
is partial order of execution necessary (Req. 1).

After the diagnostic results and statements are analyzed (fragments b4,b5)
the anaesthesia can be planned. On the day of surgery the planned anaesthesia
is usually put into effect. After the surgical procedure the whole process has to
be documented by the participating users.

This example shows one possible implementation of the workflow which is
quickly build, stable and especially easy to maintain as long as the number of
parallel paths is low. Though there may be a complete blood count (not shown in
the picture) needed instead of a haemogram (which is a subset of tests included
in the complete blood count) so there may be alternative paths of execution
involved (Req. 4). Nevertheless, the corresponding task is meant to handle both
diagnostic results since they are of the same type. Furthermore, it could be
necessary to check all daily blood count results from the patient over the past
week (Req. 3) which is in Fig. 2 represented by just one task. So this is a rather
pragmatic approach which comes with the trade-off that the implementation is
not quite as exact and as flexible as the real process in the hospital is.

2.3 State of the Art

Several work has been done in the area of supporting healthcare processes using
workflow management systems. Of these, few especially were concerned with the
perioperative process. Related work can be found in the general area of flexible
business process management systems [8, 9, 10, 11]. Few papers explore flexibility
in workflows for healthcare, e.g. [12, 13, 14].

Reijers et al. [12] identifies several flexibility patterns but concentrates on the
outpatient management in a Dutch hospital. Furthermore, how current workflow
system would support such patterns is also part of the analysis.

Müller, Greiner, and Rahm [13] present a system called AgentWork providing
support for automated workflow adaption. To cope with exceptions during work-
flow execution an ECA rule approach based on temporal logic was introduced.
The event monitoring is described using ActiveTFL (Active Temporal Frame
Logic) which is mapped to database triggers. AgentWork is highly related to
the underling process management system Adept [10] which offer a rich set
of change operations supporting dynamic structural adaptations ([1]). However,

Enabling YAWL to Handle Dynamic Operating Room Management 5

the trigger mechanism allows only monitoring state transitions. But we need at
certain times the exact state of data sources. Additionally, the change of pro-
cess instances according to the principle of Adept is very expensive. Frequent
changes in the process model, which may need to be verified by the users, is not
acceptable for our application.

Hallerbach et al. [15] configure process models extending the process mod-
eling language. Configuration elements within the modeling language are used
to configure the process model. The Provop approach supports flexibility during
execution by switching between different process variants. As this method is very
costly, our approach compose the required model at runtime.

Pockets of flexibility [11] uses the concept of open instances. Within the pro-
cess model pockets of flexibility were defined within a core process. A pocket is a
special build activity which composes activities depending on different constructs
(e.g. fork sequence, etc.). Just as our approach it is according to [1] assigned to
the late modeling concept. However, the composition is left to the user and is
restricted afterwards by conditions. Also conditions related to external environ-
ment are not considered.

Flexibility as a service is offered by the Wfms Yawl [16, 8, 9]. The Worklet
approach [8] offers a set of self-contained sub-processes. Selection rules (Ripple
Down Rules) are used to pick up a Worklet. However, dynamics are restricted
to flexible selection of ready-made sub-processes which corresponds to the con-
cept of late binding introduced in [1]. Declare [9] avoids the disadvantages
of Worklets by using declarative models describing loosely-structured processes.
The approach also has drawbacks with data integration. Constraints are only
defined between tasks and task parameters. In addition, process models are very
complex, if many rules have to be used to describe the execution in detail.

We present a new approach to support flexible workflows in the clinical en-
vironment. Therefore, our flexible workflows will be adapted in dependency of
the current state of data generated by various clinical systems.

3 Flexible Data Aware Workflows

3.1 Dynamic Process Specification

Within the Perikles project, HL7 messages, generated by various clinical sys-
tems, will be persisted as XML type documents in a XML Data Base. Our
processes will be adapted in dependency of the current state of theses HL7 mes-
sages and other XML type data sources during runtime using a dynamic dis-
patch of activities. Therefore, our approach observes messages and data which
are broadcasted via different channels and specifies where corresponding changes
in the process should take effect, i.e. where dynamically generated sub-process
are executed. We use a notation of a core process which is extended with special
observer and generator tasks. In order to achieve flexibility within the perioper-
ative process the full specification of the process model is completed at runtime.
To illustrate our approach Fig. 3 outlines the newly introduced concepts.

6 S. Schick, H. Meyer, M. Bandt and A. Heuer

a

b1

b3

a

b1

},{ 2,21,22
MMM rrR  },,{ 3,42,41,44

CCCC rrrR 

Ot2
Gt4

Gt51t 3t

4actset

SN4

ERP

HIS

other
Clinical

Systems

Clinical Backend
Systems

b3

},{ 314 bbactset 

CR 4

4refset

},,,{ 43214 bbbbrefset 

composition execution

Fig. 3. Dynamic process specification

Bricklets bi are the building blocks for re-using specific activities which are
bundled into sub-processes. They are not directly part of the process specifica-
tion but will be executed at well defined points. The bricklets are a mean for
separating the application specific process from data specific parts which rely on
up-to-date data.

Definition 1 (Bricklet). Let B = {b1, b2, · · · , bi} with i ∈ N be the set of
bricklets. A bricklet bi is a valid process model, which contains at least one task
definition. Bricklets will be assembled into subnets SNi.

Observer tasks tOi define points within the workflow where the actual
broadcasted messages and data will be investigated. Usually, observer tasks are
inserted after activities which expected to cause major changes of the data. The
task tO2 in Fig. 3 denotes an observer task which makes use of the matching
rule set (RM

2). The rules (rM2,1, r
M
2,2) specify which activities should be added or

removed from the process if there are certain parts in the HL7 message or if they
are absent.

Whether a HL7 message fragment exists or not is determined using the path
expression pexprj and the function match(pexprj). If the expression gets evalu-
ated true corresponding bricklets are added to or removed from the construction
set actset4 of generator tasks tG4 . Furthermore, the selected fragments are re-
turned as pfragj .

Definition 2 (Observer Task). Let TO denote the set of observer tasks tOi =
(RM

i ,match) with i ∈ N . Then:

– RM
i = {rMi,1, rMi,2, · · · , rMi,j} with j ∈ N is a set of matching rules.

– rMi,j : match(pexprj) 7→ (op, tGm, Bj , pfragj) is a matching rule.
– pexprj is used to specify data parts expected within the data. It is basically a

XPath expression.
– op = {add, delete,merge, undo} is the set of change operations.

Enabling YAWL to Handle Dynamic Operating Room Management 7

– tGm ∈ TG is a generator task.
– Bj ⊆ refsetm is a set of predefined bricklets.
– pfragj contains the resulting XPath 1.0 nodeset using pexprj.

Matching rules RM
i associate parts of a message (based on content and/or

structure) with a set of bricklets (activities) and define points in the control flow
where the activities should be scheduled. So, XPath expression will describe the
parts within message instances which should (not) match and trigger activities
in the subsequent workflow. Sometimes the existence or absence of a message
will not only add but remove also scheduled activities depending whatever the
default behavior may be, e.g. if the patient withdraw the prior informed consent
(PIC) several treatment activities will most likely be cancelled immediately.

Each pexprj within a matching rule ri,j is closely associated with an operation
op. Where an operation op may only use bricklets from set refseti.

Definition 3 (Change Operation). Let op = {add, delete,merge, undo} de-
notes the set of possible operations to manipulate the construction set actseti
(hereinafter actset) of generator tasks tGi . Then:

– The add operation appends the set of activated bricklets Bj to the activa-
tion set actset.b. For each activated bricklet also the corresponding number
count(pfragj) is stored in actset.f(bk).
add(tGm, Bj , pfragj) 7→ ∀ bk ∈ Bj : {actset.b = actset.b ∪ bk
∧ actset.f(bk) = count(pfragj)}

– The merge operation appends a set of predefined bricklets Bj only into actset.b
if they are not member of it. Virtual, this operation updates actset.f(bk)
merge(tGm, Bj , pfragj) 7→ ∀ bk ∈ (Bj∩actset.b) : actset.f(bk) = count(pfragj)

– The delete operation removes bricklets from actset.
delete(tGm, Bj , pfragj)∀bk ∈ Bj : {(actset.b = actset.b \ {bk})
∧delete(actset.f(bk))}

– Let B−1
j be the compensation of Bj then the undo operation appends a set of

compensating bricklets B−1
j to the activation set actset to rollback operations

Bj after a data fragment was removed from the document.
undo(tGm, Bj) 7→ ∀ bk ∈ Bj : {actset.b = actset.b ∪ bk}

Generator tasks2 tGi specify points within the flow of control where brick-
lets are combined at run-time to build up a subnet of activities, e.g. SN4 in Fig.
3. The resulting subnet is then deployed and executed. Essentially, the gener-
ator tasks are responsible for dynamic dispatching the activities/bricklets like
selecting and executing method calls in object-oriented systems. For building
up the subnets a set of composition rules (RC

i) and set of scheduled activities
(actset4) is used. The scheduled activities must belong to a set of allowed activ-
ities (refset4) per distinct generator task. If a generator task is executed within
the process, it has to compose a valid execution order for the activated bricklets.
The generator tasks is the anchor point for providing flexibility at the process
instances level.
2 It resembles the idea of pockets of flexibility introduced in [11].

8 S. Schick, H. Meyer, M. Bandt and A. Heuer

Definition 4 (Generator Task). Let TG be the set of generator tasks tGi :
(RC

i , actseti, refseti) 7→ SNi with i ∈ N . Then:

– SNi is a valid subnet executed if tGi is processed within the control flow.
– RC

i = {rCi,1, rCi,2, · · · , rCi,j} with j ∈ N defines a set of construction rules which
are used for the generation of a valid SNi.

– actseti is a set of active bricklets (bk) and corresponding number of data frag-
ments (f(bk)) chosen by different observer tasks tOm.

– refseti defines all bricklets allowed for tGi .

Construction rules RC
i define relationships between bricklets and how they

are combined into a resulting control flow. If a bricklet is a pre-requisite for
another, a sub-sequent order can be specified. Further, a bricklet can be executed
sequential or parallel n-times. If not stated otherwise, bricklets can be executed
arbitrarily and in parallel. The construction rules are used to generate a valid
subnet SNi during runtime, which have to be instantiated for tGi at runtime.

Definition 5 (Construction Rules). Let RC
i be the set of construction rules

rCi,j. A construction rule rCi,j ∈ {bk ≺ bl, bk
n
≺, bk

n

||} defines how a bricklet bk is
inserted into the subnet SNi iff bk ∈ actseti.

– bk ≺ bl: Iff bricklet bl ∈ actseti, bl is immediately executed after bk.

– bk
n
≺: The bricklet bk will be inserted sequentially n times.

– bk
n

||: The bricklet bk will be inserted n times in parallel.

By using these concepts, we avoid complex process structures. The primary
process specification is a model of the application’s point of view. Wherever
message specific activities have to be carried out, they are hidden by generator
tasks and descriptive matching and composition rules. These rules determine the
dynamic execution of a re-usable set of message specific activities.

3.2 Composing Sub-processes

After the activation of bricklets, which is done by the observer tasks, the con-
struction of a valid sub-process has to be controlled by the generator task. There-
fore, we provide an algorithm for combining bricklets bk into a valid subnet using
the construction rule set RC

i . The composition is done during runtime to offer a
flexible generation of subnets.

Since actseti changes during runtime, SNi has to be generated only when
tGi is activated. This is a two-step procedure. First a directed acyclic graph is
created with all activated bricklets bn ∈ actseti. In the second step we transform
the graph into a valid sub-process (Yawl subnet).

Definition 6. Let GC
i = (V,E) be a digraph. V is the set of vertices and E

is the set of directed edges. The graph GC
i contains only one starting vertex

”start” ∈ V and one ending vertex ”end” ∈ V .

Enabling YAWL to Handle Dynamic Operating Room Management 9

Definition 7. The indegree deg−(bk) is the number of head endpoints for bricklet
bk. The outdegree deg+(bk) is the number of tail endpoints for bk.

Listing 1 shows a simple algorithm to calculate SNi. Since the subnet is
composed during runtime no deferred choice is needed and no composition rule
is mapped to OR-splits, too. We avoid cycles in the constructed subnet graph
by enforcing acyclicity of the construction rule set RC

i at modeling time3.

Listing 1. Algorithm to calculate subnets

1 initialize G with G.V = {start, end} ∪ actseti and G.E = {}
2 foreach rCi,j ∈ RC

i {

3 if rCi,j equals bk ≺ bl and {bk, bl} ⊆ actseti {

4 add directed edge (bk, bl) }}

5 foreach rCi,j ∈ RC
i {

6 // expand replaces bk by n nodes bk.m of type bk ∧m ∈ {1, . . . , n}

7 if rCi,j equals bk
n
≺ and bk ∈ actseti {

8 n = actseti.f(bk); expand(bk, n);
9 add directed edge between successive bk.m }

10 if rCi,j equals bk
n

|| and bk ∈ actseti {

11 n = actseti.f(bk); expand(bk, n)
12 if ∃rCi,m ∈ RC

i ∧ ri,m equals bk ≺ bl {

13 foreach bk.o ∈ {bk.1, . . . , bk.n} { add directed edge (bk.o, bl) }}

14 if ∃rCi,m ∈ RC
i ∧ ri,m equals bl ≺ bk {

15 foreach bk.o ∈ {bk.1, . . . , bk.n} { add directed edge (bl, bk.o) }}}}

16 foreach bk ∈ G.V {

17 if deg−(bk) = 0 { add directed edge (start, bk) }

18 if deg+(bk) = 0 { add directed edge (bk, end) }}

4 Implementation using Yawl and Component Services

The approach presented above was exemplified using Yawl [17] and the corre-
sponding Wfms Yawl. Two Yawl Custom Component Services for the observer
and generator task types were implemented. We have extended the Yawl editor
to describe the matching and construction rule sets. This allows for modeling ev-
erything within the standard Yawl environment. The bricklets are implemented
as Yawl nets which contain always a start and end condition.

After constructing a digraph for subnet SNi within generator task tGi , the
graph is tansformed into a valid Yawl net. This Yawl net then gets executed
by the Wfms. The transformation is based on rules R1...6 shown in Fig. 4. In
the resulting net each bricklet is represented by a composite task. This tasks in
turn is a container for the bricklet process.

R1 maps the start node to a Yawl Input Condition where the process starts.
R2 maps the end note to a Output Condition where the process ends.

3 This can be done by applying RC
i on refseti

10 S. Schick, H. Meyer, M. Bandt and A. Heuer

start

end

bi

bj

start

bi

bj

bi

bj

end

bi bj bi bj

YAWL primitives

AND-joinAND-split Atomic
task

Input
condition

Output
condition

YAWL Notation Graph Notation YAWL Notation

R1

R2
R5

R6

R3

R4

a

bi

bj

a
bi

bj

bk bn

bi

bj

bk bn

Graph Notation

Fig. 4. Graph to Yawl mapping rules

R3 maps a sequential path from node bi and bj to corresponding tasks bi, bj .
R4 maps the split of node bk to a And-Split task bk. Nodes bi, bj are mapped to

corresponding tasks bi, bj . Node bn is mapped to a And-Join task bn.
R5 is for circumstances where the start node start is part of a parallel execution.

start is mapped to a Input Condition together with a And-Split task a. a is
a dummy task. Nodes bi, bj are mapped to corresponding tasks bi, bj .

R6 is for the same situation as R5, if the end node end is part of a parallel
execution. end is mapped to a Output Condition together with a dummy
And-Join task a. Nodes bi, bj are mapped to corresponding tasks bi, bj .

5 Implementing the Sample Scenario

In Fig. 5 (a) the process from Fig. 2 is realized using our approach. Task re-
quest statement (t1) is modeled as an observer task which controls the dy-
namic dispatch of activities in generator task planning t2. Task t2 provides
the set of selectable bricklets refset2 = {b1, b2, b3, b4, b5}, which are corre-
spond to the tasks in Fig. 2. The observer task t1 uses a set of matching
rules RM

1 = {rM1,1, rM1,2, rM1,3} with rM1,1 = add(t2, b2, ”//OBR[../PID/PID.3/CX.1=

’123’][OBR.4/CWE.1=’X-ray’]”) and rM1,2 = add(t2, {b1, b4}, ”//OBR[../PID/
PID.3/CX.1=’123’][OBR.4/CWE.1=’haemogram’]”)4. For the sub-process con-

struction in t2, the rule set RC
1 = {b1 ≺ b4, b1

2
≺, b2

2

||} is used. They reflect
the order of the activities in Fig. 2. Due to matching rules rM1,1, rM1,2 the ob-
server task t1 activates the bricklets in actset2 = {b1, b2, b4}, which is a subset
of refset2 = {b1, b2, b3, b4, b5}. Fig. 5 (b)–(d) depict the construction of digraph
G. First, all activated bricklets (b1, b2, b4) will be inserted into G.V (Fig. 5 (b)).

4 The XPath queries on the HL7 messages match for the patient 123 and if they
contain a X-ray or a haemogram.

Enabling YAWL to Handle Dynamic Operating Room Management 11

narcosis
plan

request
statementsO

execution
anesth. proc.

surgery documen-
tation

b1 b2 b4start end

start endb1 b2 b2

(a)

(b)

b1

a b2 a

(d)

b1 b4 b4

start endb1

b2

b2

b1 b4 b4

b1 b4 b4

b2

(c)

},,{ 3,12,11,11
MMMM rrrR  },,{ 3,22,21,22

CCCC rrrR 

},,{ 4212 bbbactset 

},,,,{ 543212 bbbbbrefset 
planningG

(e)

t1 t2 t3 t4 t5 t6

b1: X-ray analysis b2: haemogram analysis b3: angiography analysis b4: analysis of r statement b5: analysis of i statement

Fig. 5. Digraph construction and transformation into a Yawl subnet

The application of rules b1 ≺ b4 (edge from b1 to b4), b1
2
≺ (edge from first

b1 to second b1) and b2
2

|| (b2 is duplicated) is shown in (c). We assume that
count(pfragj) returns always 2. The final step (d) connects all vertices with
deg−(bi) = 0 or deg+(bi) = 0 with the ”start” and ”end” nodes. The Yawl
subnet (e) results from transforming digraph G into Yawl. This subnet gets
deployed and executed at run-time by generator task t2.

6 Conclusion and Future Work

Process support in the perioperative process is a field that bears much practical
relevance. We provided an approach for a flexible perioperative process. With
respect to other approaches, we achieve flexibility by monitoring data changes
and specifying where corresponding changes should take effect. This is done by
extending the Wfms Yawl with observer tasks which monitor these changes.
Generator tasks allow for flexible execution of process instances. Our technique
presented here can be described best as a late modeling, descriptive approach
using under-specification [1].

The added value of our approach is that both context conditions on external
data and the resulting changes of the process instances are described within one
process model. Additionally, all components of our approach will be provided and
executed within an extension of the Wfms Yawl. A prototype that implements
the approach will finally allow a detailed case study and evaluation.

12 S. Schick, H. Meyer, M. Bandt and A. Heuer

In future research we will extent relationships between data operations and
rule sets for process constructions to provide more freedom in combining bricklets
(process fragments) into sub-processes. One of the challenges concerns the auto-
matic generation of construction rules. Also data dependencies between bricklets
have to be considered in more detail.

References

1. Weber, B., Sadiq, S., Reichert, M.: Beyond rigidity — dynamic process lifecycle
support. Computer Science — Research and Development 23 (2009) 47–65

2. Kühn, R., Bandt, M., Dittmar, A., Meyer, H., Forbrig, P.: Hops: modeling flexible,
clinical processes as the basis of workflow-based assistance system (german). In:
USEWARE 2010. Number 2099 in VDI-Berichte/VDI-Tagungsbände (2010) 77–86

3. Kühn, R., Dittmar, A., Forbrig, P.: Alternative representations of workflow control-
flow patterns using hops. In: LNBIP. Volume 64. Springer (2010) 115–129

4. Ouyang, C., Wynn, M.T., Fidge, C., ter Hofstede, A.H.M., Kuhr, J.C., Becker, T.:
Workflow support for scheduling in surgical care processes. In: accepted paper at
ECIS 2011. (2011)

5. Sandberg, W.S., Ganous, T.J., Steiner, C.: Setting a Research Agenda for Periop-
erative Systems Design. Surgical Innovation 10(2) (2003) 57–70

6. Bandt, M., Kühn, R., Schick, S., Meyer, H.: Beyond flexibility - workflows in the
perioperative sector of the healthcare domain. ECEASST 37 (2011)

7. van der Aalst, W.M.P., ter Hofstede, A.: Yawl: Yet another workflow language.
Information Systems 30(4) (2005) 245–275

8. Adams, M., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Worklets:
A service-oriented implementation of dynamic flexibility in workflows. In: OTM
Conferences (1). (2006) 291–308

9. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: Declare: Full support for
loosely-structured processes. In: EDOC. (2007) 287–300

10. Reichert, M., Dadam, P.: ADEPTflex — Supporting Dynamic Changes of Work-
flows Without Losing Control. J. Intell. Inf. Syst. 10(2) (1998) 93–129

11. Sadiq, S.W., Orlowska, M.E., Sadiq, W.: Specification and validation of process
constraints for flexible workflows. Inf. Syst. 30(5) (2005) 349–378

12. Reijers, H.A., Russell, N.C., Van Der Geer, S.b., Krekels, G.A.M.c.: Workflow
for healthcare: A methodology for realizing flexible medical treatment processes.
Lecture Notes in Business Information Processing 43 LNBIP (2010) 593–604

13. Müller, R., Greiner, U., Rahm, E.: Agentwork: A workflow system supporting
rule-based workflow adaptation. Data and Knowledge Engineering 51(2) (2004)
223–256

14. Mans, R.S., Russell, N.C., van der Aalst, W.M.P., Bakker, P.J.M., Moleman, A.J.,
Jaspers, M.W.M.: Proclets in healthcare. Journal of Biomedical Informatics 43(4)
(2010) 632–649

15. Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in business process
models: the provop approach. Journal of Software Maintenance 22(6-7) (2010)
519–546

16. van der Aalst, W.M.P., Adams, M., ter Hofstede, A.H.M., Pesic, M., Schonenberg,
H.: Flexibility as a service. In: DASFAA Workshops. (2009) 319–333

17. van der Aalst, W.M.P., ter Hofstede, A.H.M.: Yawl: yet another workflow language.
Information Systems 30(4) (2005) 245–275

