ROLE-BASED PERSISTENCE
Jiirgen Schlegelmilch

University of Rostock,Computer Science Dept., D-18051 Rostock, Germany

ABSTRACT

In most object-oriented systems, references are the only way to express the coupling
of objects. They define the visibility among objects, associations of objects, and often
lifetime dependencies. We present a relationship construct that separates these three
issues, thereby allowing to reduce dependencies and enhance potential parallelism.
In this paper, we concentrate on the flexible definition of lifetime dependencies: The
persistence of an object is determined by the connections it has with other objects.

1 INTRODUCTION

In object-oriented systems, objects communicate with and depend on other
objects. The connections are often modeled by references between objects,
whereas in specification models general relationships are used. References de-
fine a tight coupling, while relationships can keep the coupling as low as needed,
in order to enable inter-object concurrency. One form of coupling is lifetime
dependency, or persistence: In many systems, the lifetime of an object depends
on that of objects referencing it. In this paper, we present a relationship mech-
anism with a persistence model that separates the issues of connections, visibil-
ity, and lifetime dependencies between objects. This allows the programmer to
choose only those dependencies that are needed, thereby reducing cohesion be-
tween objects. This work is part of the OSCAR! project [10] where we develop
an object-oriented database management system; OSCAR is based on the da-

1Object Management System for Complex Applications, Approach: Relational

2 CHAPTER 1

tabase model EXTREM?, offering all structural elements of an object-oriented
database management system.

Road Map The remainder of this paper is organized as follows: The first
part introduces our relationship proposal. Section 2 motivates our decisions
in favor of relationships and sketches the idea of the relationship mechanism,
while Section 3 defines its syntax and semantics. Section 4 describes operations
on relationships, and Section 5 introduces derived relationships. The second
part of the paper presents the concept of role-based persistence in Section 6,
which is used to model other persistence models in Section 7. Finally, Section 8
summarizes the contributions.

2 MOTIVATION

Many object-oriented specification models offer several relationship types, e.g.
aggregation, association, and message connection. Apart from the set of re-
lated objects, they describe interaction, integrity constraints, attributes of the
connection, and lifetime dependencies. With a relationship construct, we can
specify these properties as needed, thereby tuning the amount of cohesion be-
tween the related objects. In contrast, the references that most object-oriented
programming languages use to connect objects have a fixed set of these prop-
erties:

m References connect one object to another, so they are inherently binary.

m They combine connection and visibility: the referenced object is made
visible to the referencing one; thus, references are directed.

= Insome systems [15, 9, 6, 22], a reference also defines a lifetime dependency:
the target object depends on the referencing object.

m No attributes can be given to describe the connection.

References are often stored in instance variables, thus spreading the relationship
among several objects and classes. To find a related object, we have to access
the state of an object, thereby blocking concurrent accesses to it. A detailed
criticism on relationships based on references is given in [19] and [21].

2Extended Relational Model

Role-Based Persistence 3

The Relational Approach The relational model has more capabilities to
model relationships. In fact, everything in a relational database is modeled as
a relationship between values. Relations can be interpreted to either represent
a set of entities, or denote a relationship via foreign key dependencies®. By
replacing foreign keys with object identifiers, we get a solid base for modeling
relationships without sacrificing the advantages of the relational model.

We interpret the tuples in a relation as one-to—one connections between the
objects denoted by their object identifiers. Other components of the tuple
describe the connection between the objects. With this relational background,
we can use standard relational query languages to handle our relationships, and
benefit from the research in the relational database area.

In this article we use the algebra for nested relations from [20] with the following
syntax (with relations R, S, attributes a, n, lists of attributes L, and predicates
pred):

operator syntax | operator syntax | operator syntax
instantiation R selection o[pred](R) | projection w[L](R)
natural join RS | renaming [[n + a](R) | union RUS
nesting u[n; LJ(R) | unnesting v[n](R) intersection RN S

To relate one object o to n others, we need n tuples in the relation, each
tuple describing a one-to—one connection. With nested relations and a suitable
algebra, these n tuples can be nested into one with an attribute holding o
and another, relation-valued attribute holding unary tuples with the n objects.
Since this structure is only one view supporting object o, we prefer the flat
relational model for specification.

Bare relations do not provide any kind of access from an object to a related
one, nor do they specify lifetime dependencies among them. We therefore
add constructs to declare access methods and dependencies, keys and general
integrity constraints.

3 THE RELATIONSHIP MECHANISM

The database model EXTREM The EXTREM model supports both val-
ues and objects. Values are grouped into types, objects are grouped into classes.
The classes are divided into abstract and free ones and placed into an inheri-
tance lattice formed by the subset relation on class extents. Each type and class

3Mixed cases are possible and can be seen as an optimization.

4 CHAPTER 1

describes the structure and behavior of its elements by typed attributes and
methods. Each object belongs to exactly one abstract class and may belong
to several free classes; it can move into and out of subclasses, and has a set of
values for the attributes of the classes it belongs to. Objects of subclasses may
be substituted for those of super-classes; for method calls, dynamic binding
picks the most specific implementation regardless of the variable the object is
bound to. In contrast, values can only be used with their real type, and imple-
mentations for their methods are linked statically. Both types and classes have
a set extent of their values and objects, resp. In the sequel, Types is the set of
all types, and Classes the set of all classes.

Relationships In the original EXTREM database model [10], attributes are
allowed to have a class type. We replace this kind of attributes by relationships
with relationship attributes, and access methods in classes.

Definition (relationship attribute)

A relationship attribute is an object a with a name token(a) and a type
type(a) € Types U Classes; token has to be globally unique. We call a a role if
type(a) is a class type.

Definition (relationship)

A relationship is an object R with a set attrs of relationship attributes, a set
vital(R) C attrs(R) of roles, a set extent(R), and a set cons(R) of constraints
(predicates).

The domain of R is defined as
dom(R) = {c| c = {token(a) : — extent(type(a))|a € attrs(R)}}

i.e. elements of dom(R) are sets of constant functions having the names of the
relationship attributes; we call these sets connections. We write a(c) to denote
the result of the function a in the connection c¢. The set attrs(R) is often called
the schema of R.

Persistence: The set vital(R) C attrs(R) of roles specifies the roles keeping
their objects persistent (see Section 6).

Extent: Although a relationship looks much like a set—of-tuples type, connec-
tions have to be created and deleted explicitly like objects. The set extent(R) C
dom(R) holds the connections of R. ¢ € extent(R) represents a connection be-
tween the objects specified by its roles which is further described by the other
relationship attributes.

Playing roles: An object o plays the role r in the connection ¢ iff r(c) = o; it
plays the role in the relationship R iff 3¢ € extent(R) : r(c) = o.
Constraints: The set cons(R) of a relationship R is a set of predicates of first

Role-Based Persistence 5)

order predicate logic with quantifiers over the schema of R and global names;
it restricts the set of connections extent(R). R is called consistent if and only
if Vp € cond(R) : extent(R) |= p.

Syntax We use the following syntax to define relationships:*

relationship ::=relationship relation-name
(rel-definition)
{; key-definition}
[; constraint]
[; persistence]
{; access-definition} .

rel-definition ::=schema-definition | query-expression
schema-definition::=col-definition {, col-definition}

col-definition ::=column-name: type[cardinality]

cardinality s:=Llimit[: imatl][, limit[: limitI]]]

limat ::=Number

limatl =limit|*

key-definition ::=key column-name {,column-name}

constraint :=with condition

persistence ::=vital role-name {,role-name}
access-definition ::=in role-name. att-name as (query-expression)

The semantics of these constructs is explained in the sequel using the example in
Figure 1. The relationship family models a ternary relation between persons.
Each Person can be the child of exactly one (father,mother) combination,
but for some Persons we do not know the parents; Person is the union of
Female and Male. Fach Male can be father arbitrarily often with different
Females, and vice versa with Females and mother. Parents access their partners
and children via the method family, and children access their parent tuple via
the method parents.

Semantics The rel-definition defines the schema of the new relationship R.
In the schema-definition clause, we define the schema explicitly: Each col-
definition defines a relationship attribute in attrs(R) with the given name and
type. If the name token has already been used in another relationship defini-
tion, it denotes the same relationship attribute, so the types must be identical.

4Typewriter font denotes keywords, non-terminal symbols appear in italics. Brackets [/
enclose optional parts, parts in braces {} may be repeated zero or more times, and the bar |
separates alternatives. Concatenation has precedence over |; parentheses () can be used to
change precedence.

6 CHAPTER 1

relationship families
(father:Male[1,0:%],
mother:Female[1,0:%],
child:Person[1,0:1]);
vital father,mother;
in father.family as
(7 [mother,child] (o [father=this] (families)));
in mother.family as
(r[father,child] (¢ [mother=this] (families)));
in child.parents as
(r[father,mother] (o [child=this] (families)));

Figure 1 Relationship between classes Male, Female, and Person

Using the query-expression instead of the schema-definition defines a derived
relationship; we discuss this in Section 5.

The cardinality clause for an attribute a adds cardinality constraints to the
set cons(R). This clause defines one or two intervals of N U {oo}, with oo
denoted as *; intervals m :n are abbreviated to n. The first interval is called
the inner range and restricts the number of connections that only differ in this
role; therefore, its lower bound must not be zero. The second interval is called
the outer range and specifies, how often an object may play the role a in this
relationship. This range is only needed for roles: multiple occurrences of a
value are unrelated to each other, while multiple occurrences of an object share
the same state. For the inner range [n : m] and outer range [n’ : m'] of a role
a, the following constraints are added to cons(R):

Vt € m[a; € attrs(R),a; # a](R) : n < ‘0’[/\ a; = a;()](R)| <m (1.1)

Vo € extent(type(a)) : n' < |ofa = o](R)| < m/ (1.2)

Example In Figure 1, for role mother the formulas (1.1) and (1.2) read

Ve € w[father, child|(families) :
1 < |o[father = father(e) A child = child(e)](families)| < 1

Vd € Female : 0 < |a[mother = d](families)| <0

This means, that any combination of father and child has exactly one mother,
and a Female does not have to be a mother, but could be arbitrarily often.

Role-Based Persistence 7

If the upper bound of the outer range of a role is 1, the role is a key for the
relationship. The key-definition clause allows the definition of additional com-
pound keys. The constraint clause takes a predicate of first order predicate logic
over the columns of the relationship. Both clauses insert suitable predicates
into the set cons(R).

The persistence clause inserts the roles in its argument list into the set vital(R).
This set defines role-based persistence and is discussed in detail in Section 6.

3.1 Defining Visibility

With a relationship, we can describe connections between objects, but the
related objects cannot access each other directly. Therefore we need to define
access methods for the roles. These methods are not part of the relationship
but of the classes of the roles. The access-definition clause defines an access
method with name att-name in the class of role. In their implementation,
these methods can e.g. select from the relationship those connections where
the current object plays the role in question, thus returning a local view on
the relationship. Since objects in (object-preserving) views are fully updatable
[12], access methods offer the functionality of references, except for establishing
and breaking up a connection. In fact, access methods give more functionality,
as they can provide transitive, reflexive, or symmetric closures of relationships
as proposed for the ODMG’9X standard in [5]. They also make visibility
independend from other properties of the relationship.

Example In Figure 1, three access methods are defined: Both mother and
father have a method family returning the combinations of a child and the
other parent, and the children have a method parent computing the tuple of
Female and Male that are her or his parents.

Several connections sharing some objects in a role can be interpreted as a
set-valued connection. With nested relational algebra, access methods can
restructure the relationship to make such connections visible. By using flat
relations, we do not impose a fixed view on the relationship but leave it to the
access methods to present structured views.

Example In Figure 1, the access method family for role father can group
the children according to the mother, with the implementation

p[children; child](r[mother, child](c[father = this](families)))

8 CHAPTER 1

The result is a relationship with schema {mother, children}, where children
is a set of tuples with one component child. The extent contains tuples of
mothers together with the set of children she has with the father in question.

Related Work Postgres [23] uses a similar approach in a relational environ-
ment to provide access between tables that are connected via foreign keys. It
allows to use procedures as attributes of a relation. Reading the attribute value
returns the result of the procedure.

[19] describes simple access methods to encapsulate insertions, deletions, and
selections on relationships. No operators for restructuring relations are pro-
vided.

[7] discusses derived attributes for relationships; these attributes are read-only
references and cannot offer a restructured view onto the relationship. The scope
of roles and attributes of a relationship can be restricted to the participants,
so they look like attributes of the objects. The system automatically defines
methods to insert and delete connections for the relationship as well as for the
derived attributes in the objects.

4 OPERATIONS ON RELATIONSHIPS

Only generic operations are needed to manage the set of connections of a rela-
tionship. INSERT adds a connection, and DELETE deletes a connection specified
by a key. Of course, the resulting relationship has to be consistent. Reactions
on integrity violations are flexible [21]. Retrieval is done using any of the rela-
tional query languages. In our database system OSCAR, all query languages
include a complete nested relational base language that we can use to query
relationships. To maintain referential integrity, the runtime system propagates
deletions of objects to all relationships: if an object o gets deleted, all connec-
tions in which o plays a role are deleted from all relationships, too. Otherwise,
there would be invalid object identifiers in relationships.

5 DERIVED RELATIONSHIPS

In relational database systems, we have base tables that are managed by explicit
INSERT and DELETE operations, and views that are defined by a query. The
relationships we discussed so far correspond to base tables, but our relational
approach allows us to define views as well. We call them derived relationships,

Role-Based Persistence 9

and define them using the query-expression alternative of the rel-definition
clause. Both the schema and the extent of a derived relationship, as well as the
set of integrity constraints, are defined by the query expression. The defining
query can be formulated in any relational query language. These languages
are efficiently implamentable, optimizable, and are guaranteed to deliver finite
results.

Example An example of a derived relationship is the parents relationship,
that can be derived from the families relationship in Figure 1 like this:

relationship parents
(PBlparent «+ father]|(r[father,child](families))
Up[parent + mother]|(m[mother, child]|(families))) .

The parents relationship is the set of tuples of a parent and one of its children;
the schema is {parent,child}. This is only possible because the type of the
parent role can be generalized from Male and Female, resp., to Person.

Discussion Object-oriented query languages like the ODMG’93 standard
query language OQL [5] or our object algebra ABRAXAS [10] offer object-
generating clauses to be able to represent new combinations of existing ob-
jects. If these clauses are evaluated n times, n objects would be generated
for the same combination. To avoid these multiple objects, the new object
identifiers are usually derived from the combination by a function [14, 11] so
that a second evaluation of the object-generating clause yields the same set of
objects. So, these object identities are functionally dependent on the state of
the object, instead of only determining it. The persistence of the generated ob-
jects is also questionable: they strongly depend on the objects they reference.
Usually, it is just the other way round: a referenced object depends on the
referencing object, not vice versa. With our relationship mechanism, the need
for object-generating queries is much weaker, as new combinations of objects
can be modeled by derived relationships.

The integration of relationships into OSCAR’s query languages is beyond the
scope of this paper.

Related Work In [19], [2], and [1], connections are always established and
removed by explicit action. [19] only provides operations for membership test,
simple selections, and full scans, and leaves it to the programmer to code higher
level operations. This set of operations is meant for access methods, not for
views. [1] includes a relational-like algebra that is capable of computing new
relationships, but the language only allows to define snapshots, not views. So,

10 CHAPTER 1

none of these approaches supports derived relationships.

[7] does not discuss intensional relationships either, but the underlying language
Prolog would be able to provide derived relationships. Connections are modeled
as objects, and objects are implemented as sets of facts. Prolog can derive new
facts from known ones, thus creating derived connections, but it would then
have the problems we mentioned for object-generating queries. However, [7]
already admits to basically ignore the object identity of connections.

6 ROLE-BASED PERSISTENCE

Objects have to be created and eventually destroyed. While it is usually clear
when to create a new object, it is often unknown when a particular object can
be deleted. Most procedural programming languages, e.g. C++ [8], leave it to
the programmer to determine this situation and to explicitly delete the object.
Others, e.g. Smalltalk [9] and Eiffel [15], employ a garbage collector to delete
objects. The garbage collector will delete an object if it is unreachable, i.e. there
is no reference to it. Databases can extend the life of an object beyond the end
of an application by storing it; we then call the object persistent, in contrast
to tramsient objects that are deleted at the end of the application. However,
not all objects are worth being made persistent, and there are different policies
how to determine which objects are, and which are not.

m The programmer explicitly marks objects to be persistent. To get them
out of the database, he has to either make them transient again, or delete
them. So, persistence is managed by the programmer.

m The programmer describes declaratively, which objects should be persis-
tent. The system will then keep exactly those objects persistent that match
the given description, freeing the programmer from the responsibility to
manage persistence per object.

Our approach For our database system OSCAR, we follow the second ap-
proach. The basic idea is to determine the relevance of an object to other
objects: If an object is important for other objects, it will not be deleted be-
fore them. This dependency is described by a connection between these objects:
Objects playing a role are dependent on the objects playing the other roles in
the same connection. We then distinguish ordinary roles from important ones,
and call the latter vital roles. The persistence clause allows to declare a role to
be vital; for a relationship R, vital(R) is its set of vital roles.

Role-Based Persistence 11

Definition The definition of role-based persistence is:

Let Relationships be the set of all relationships. Then the set

U {o]3c € extent(R),r € vital(R) : 0 =7(c)}
ReRelationships

is the set of persistent objects.

A garbage collector only has to mark the objects in this set, and delete all
others. To do so, it does not have to access an object’s state and can therefore
work in parallel with other computations on the objects. Also, relationships
are usually much smaller in size than the whole set of objects, thus providing
more locality of access.

Example In Figure 1, we have two vital roles, namely mother and father.
Therefore, for any Person, the parents are persistent. Since the class Person
is the union of the classes Female and Male, the child may itself be a father
or mother. Therefore, all ancestors of a persistent person are also persistent.
However, without another relationship with a vital role for a person, no object
will be persistent at all since the parent—child relationship should be acyclic.

Discussion Role-based persistence is very flexible: If the vital role is the only
one in a relationship, an object playing it does not depend on other objects at
all. It will be persistent until it is deleted from the relationship. If there are
n ordinary roles besides the vital one, objects in this role depend on the other
n objects: if any of them is deleted, the connection is also deleted, with the
object losing the vital role. Note, that the database system OSCAR also has
an explicit DELETE command that deletes an object regardless of the roles it

plays.

Combining role-based persistence with derived relationships, we achieve full
declarative persistence: any query can define a derived relationship, and if we
declare its roles to be vital, then all objects in the query result are persistent.
Of course, to evaluate the query it is generally required to access the object’s
state; this increased cohesion is unavoidable if objects are related because of
the state they have. Note that being vital is not a property of a role; the rela-
tionship defines which roles are vital in its schema. Therefore, roles in a derived
relationship are not necessarily vital even if they are in a base relationship.

Related Work We know of no other persistence model comparable in expres-
siveness with role-based persistence plus derived relationships. The persistence

12 CHAPTER 1

model in [1] is equivalent to pure role-based persistence. For each relationship,
the programmer defines the runtime system’s reaction on the deletion of ob-
jects and of connections. Alternatives are propagation of deletion to related
objects and rollback. While this approach can achieve the same effects as pure
role-based persistence, it is not as simple to understand, and less declarative.
Without derived relationships, it cannot offer full declarative persistence.

The approach of [2] defines general relationships and a binary, acyclic rela-
tionship has-part for modeling whole—part relations; this relationship is very
close to a reference. The part object in this relationship can be declared to be
dependent on the whole object. It will be deleted with the last whole object
it is connected to.

[7] distinguishes optional and obligatory relationship attributes. Deleting an
object in an optional attribute has no effect on the connection, while for those
in obligatory attributes the whole connection is deleted. The underlying lan-
guage Prolog does garbage collection based on reachability by references from
a root set.

Other proposals for relationship mechanisms like [19] do not discuss lifetime
dependencies.

[3] demands persistence to be orthogonal to types and transparent to programs;
this implies that the persistence model has to be formulated without classes,
and it must not require special attributes or methods. Role-based persistence
meets both demands: relationships can hold values of any type and objects of
any class, and since persistence is realized outside of classes and types, programs
handle transient and persistent data transparently.

7 COMPARISON

7.1 Basic Assumptions

We now show for a number of persistence models, how they can be emulated
within our framework. The aim is to have the same set of objects persistent at
the end of a transaction, given the same sequence of operations. The emulation
is done by giving transformation rules to map the constructs of a persistence
model to declarations and operations for our database prototype OSCAR. In
addition to the mapping, a constant part may be needed to completely cover
the model we are emulating. We use C++-like syntax to keep the mapping
simple, ignoring any syntactic differences between the programming languages.

Role-Based Persistence 13

We need only few concepts of the OSCAR database system, namely relation-
ships with role-based persistence, and the generic DELETE command. Since the
declarations of classes are always persistent in OSCAR, there is no need to
mark classes for inclusion into a database schema. For simplicity, we assume
the existence of a null value NULL although OSCAR has none. The class Object
is the top element of the class lattice in OSCAR: any other class is a subclass
of Object.

7.2 Replacing References

One-to—One Since almost all programming languages use references instead
of relationships, we have to define a replacement for them. If we have a reference
named v to an object of class Y in a class X, we replace this declaration with
the following relationship:

relationship X _to_Y_in v (aX:X[1:%,1],aY:Y [1,0:%]);
in X.v as (w[aY](c[aX=this] (X _to_Y_in_v))).

The cardinalities ensure that each object in class X is related to one object in
class Y, but there may be many X objects related to the same Y object. The
access method v already provides read-access to the related object, so we only
map assignments to the variable to operations on the relationship:

expression OSCAR equivalent
0.v=Yy; DELETE (aX=0,aY=0.v) FROM X _to_Y _in_v;
INSERT (aX=0,aY=y) INTO X_to_Y_in_v;

Of course, the DELETE and INSERT operation have to be performed inside a
transaction to make the change atomic and keep the relationship X _to_Y _in_wv
consistent.

One—to—Many References from an object of class X to a set of objects of
class Y require only a minor change to the cardinalities of the relationship. For
a reference v of type set(Y) in class X, we use the following relationship:

relationship X _to_Y_in_ v (aX:X[1:%,0:x],aY:Y [1:%,0:%]);
in X.v as (w[aY](c[aX=this] (X _to_Y_in_v))).

The mapping of assignment operations is simpler for this kind of reference:

14 CHAPTER 1

assignment OSCAR equivalent
0.v+=Yy; INSERT (aX=o0,aY=y) INTO X_to_Y _in_v;
0.U-=Yy; DELETE (aX=0,aY=y) FROM X _to_Y _in_v;

Again, the access method already covers read-access to the related object.

With these mappings, we can now model any kind of reference in the EXTREM
data model with relationships. All mappings can be performed mechanically
by a preprocessor.

7.3 Persistence by Inheritance

Description In this persistence model, persistence of an object depends on
its class membership. A special class defines methods and instance variables
to make an object persistent. In the C++4 binding of the ODMG’93 standard
[5] this class is named Persistent_Object. A class is called persistent if it
inherits from this special class, and only objects of persistent classes can be
persistent. An object of a persistent class is persistent if it is assigned to a
database, and transient otherwise. This assignment is done by a parameter
db to the operator new specifying a database that the new object has to be
assigned to. The method delete object() of class d_Ref deletes the object
bound to a reference from both memory and database. While the first version
of the ODMG’93 standard [4, p.19] defined three lifetime models, the revised
version [5] only distinguishes transient and persistent objects.

Implementations The C+-+-based ODBMS Poet [18] closely follows the idea
of the ODMG’93 persistence model. In Poet’s native API, the special class is
called PtObject, and the assignment to a database db is done with the method
Assign(db) of that class. Unassigning an object with the method UnAssign()
of class PtObject makes it transient. However, the object is not automatically
deleted as required by the ODMG’93 standard; this must be done manually
with C+4++’s operator delete.

The ODBMS O [6] claims to be ODMG-compliant, but its C+-+ interface
[16] defines the class Persistent_0bject with no instance variables, and all
methods of this class including delete_object () do nothing. Persistence in the
O- system is defined by reachability (see Section 7.4); assigning or unassigning
an object has no effect on its persistence. Thus, Oy follows the persistence
model of ODMG’93 only syntactically.

Role-Based Persistence 15

Mapping To model the ODMG’93 persistence model, we provide a class and
a relationship in the constant part of the mapping:

class Persistent_0bject {};
relationship is_Persistent (theObject:Persistent_0Object);
vital theObject.

Like O3, we do not really need a special class for persistence. We now map
functions of the C++ binding of ODMG’93 to operations on the relationship
is_Persistent:

ODMG’93 function call OSCAR equivalent
v=new(db) Class(...); v=new Class(...);

INSERT (theObject=v) INTO is_Persistent;
o->delete_object(); DELETE o;

Thus, to make an object persistent, we simply insert it into the relationship
is_Persistent; the role theObject is vital and will therefore prevent the
object from being deleted by the garbage collector. The DELETE command will
delete the object in spite of this role.

7.4 Persistence by Reachability

Description This persistence model is used in the ODBMSs O, [6], GemStone
[22], and in the programming language Eiffel [15]. It is a declarative persistence
model based on references. The set of persistent objects is defined as follows:

Let ref C Object x Object be the reference relation, defined by
(0,5) € ref <= o references s, and ref” its transitive closure. Then
the set of persistent objects is

{o|3r € root : (r,0) € ref*}
for a set root of initially persistent objects.
In O, the set root is the set of objects bound to persistent variables called

names. In GemStone, it is the standard dictionary Smalltalk, and in Eiffel, it
is formed by all objects bound to variables on the stack or in the data segment.

16 CHAPTER 1

Mapping To achieve persistence by reachability in our persistence model, we
replace any reference by a binary relationship as described in Section 7.2, and
add the declaration

vital aY;

to each relationship; this makes the role of the referenced object vital. An object
will play the vital role until the connection is deleted from the relationship.
This either happens on assignment due to the mapping defined in Section 7.2,
or automatically on deletion of the referencing object. The relation ref in the
definition of persistence by reachability is the union of all the relationships we
get as replacements for references.

For the root set, we only show how to model the approach of the ODBMS
0. The idea is to have a relationship with one vital role and a relationship
attribute to hold the name of the persistent variable.

relationship root_set (name:String,theObject:0bject[1,0:%]);
vital theObject.

The cardinalities imply that name is a key for the relationship; to include set-
valued names, we would have to change them as shown in Section 7.2 for
the mapping of set-valued references, or create a second relationship with the
adapted cardinalities.

We then map access operations of Os to operations on this relationship:

O, operation OSCAR equivalent
create name v INSERT (name=v,theObject=NULL) INTO root_set;
delete name v DELETE (name=v) FROM root_set;
v w[theObject]|(o[name =v](root_set))
U=y, DELETE (name=v) FROM root_set;
INSERT (name=v,thelbject=y) INTO root_set;

Creation and deletion of a name are mapped to insertion and deletion of a
connection in the relationship root_set. Read-access to a name v is mapped
to a query on root_set; note that we have to cast the resulting object to
the desired type. Assignment of a new object to a name is handled similar to
assignment to a reference in Section 7.2.

Role-Based Persistence 17

7.5 Persistence by Creation

Description This is the approach taken by ObjectStore [17]: An object is
persistent if it is created in persistent memory. There are no restrictions on
classes or types. In contrast to the ODMG’93 approach, inheritance from a
special class is no prerequisite for persistence.

Syntactically, ObjectStore strongly resembles the persistence-related part of
the C++ binding of ODMG’93. The operator new has an additional argument
called placement that determines where to place the new object. If the place-
ment is a database, the object will be created in the database and therefore be
persistent. Unlike Poet (see Section 7.3), an object cannot become persistent
after its creation, and has to be persistent until it is deleted. Persistence by
creation is therefore rather inflexible.

Mapping To model this persistence model in our approach, we use a mapping
very similar to that presented in Section 7.3. The class Persistent_0Object
was only necessary for syntactical compliance with the ODMG’93 standard, so
we can discard it safely. The constant part of the mapping therefore consists
of only one relationship:

relationship is_Persistent (theObject:0bject);
vital theObject.

The operations of ObjectStore differ from the ODMG C++ binding only in
one point: instead of the method Persistent_0Object::delete_object (), the
standard C++ operator delete has to be used to delete objects.

ObjectStore operation OSCAR equivalent
v=new(db) Class(...); v=new Class(...);

INSERT (theObject=v) INTO is_Persistent;
delete o0; DELETE o;

To make persistent objects accessible, ObjectStore offers persistent variables
similar to that in O,. However, since persistence by creation is independent of
references, persistent objects can become unreachable. ObjectStore offers no
tool to remove such objects from the database. We note that ObjectStore can
make values persistent.

18 CHAPTER 1

7.6 Persistence on Request

Description In the database programming language GOM [13], an object
is persistent if it has been sent the message persistent. GOM requires the
programmer to mark classes with the keyword persistent to make the type
information persistent; this is not needed in OSCAR.

Mapping The mapping to role-based persistence is simple. The constant part
is the same as for the policy presented in Section 7.5:

relationship is_Persistent (theObject:0bject);
vital theObject.

The method call persistent to an object is mapped to inserting the object
into the relationship:

GOM operation OSCAR equivalent
o->persistent; INSERT (theObject=0) INTO is_Persistent;
o->transient; DELETE (the0Object=0) FROM is_Persistent;

Note that in GOM there is no way to make a persistent object transient:
method transient above is a possible extension. With our approach, this
can be achieved by deleting the object from the relationship is_Persistent.

In GOM, variables can be marked to be persistent but this only means that
their declaration is persistent; they are not entry points as described in Sec-
tion 7.4, i.e. they do not make the referenced objects persistent.

8 CONCLUSION

In this paper, we introduced general relationships as a flexible way to describe
cohesion between objects. Both visibility and lifetime dependency can be added
separately, allowing to keep coupling between objects at a minimum. Our per-
sistence model has been shown to be at least as capable as the persistence
models found in other systems, even without taking advantage of derived rela-
tionships. Our approach combines the following achievements:

Role-Based Persistence 19

1. The properties of connection, visibility, and persistence are separated from
each other. References inherently combine connection with visibility, and
persistence by reachability combines all three properties.

2. The concept of derived relationships helps reducing redundancy and avoid-
ing inconsistencies. It also adds expressive power to our persistence model.

3. Role-based persistence decouples objects. Objects can depend on other
objects without being made visible, and their lifetime no longer depends
on the state of other objects.

Besides integrating our relationship construct into the database prototype OS-
CAR, we plan to implement it on top of the commercial ODBMS O, since
its O2SQL query language supports derived relationships. However, the per-
sistence concept will not be implementable in Os: connections will be imple-
mented as tuples of references, so related objects will be kept persistent by the
connections they are in. Os does not have references without persistence.

Acknowledgements

We would like to thank the anonymous referees for their valuable comments
improving the quality of this paper.

REFERENCES

[1] Antonio Albano, Giorgio Ghelli, and Renzo Orsini. A relationship mechanism for
a strongly typed object-oriented database programming language. In Proceedings
of the 17th International Conference on Very Large Data Bases, pages 565-575,
September 1991.

[2] W. Andreas and T. Gorchs. Relationship service. Technical report, Object
Management Group, 1993. OMG TC Document 93.11.9.

[3] Malcolm P. Atkinson and Ronald Morrison. Orthogonally Persistent Object
Systems. VLDB journal, 4(3), July 1995.

[4] R.G.G. Cattell, editor. The Object Database Standard: ODMG-93. Morgan-
Kaufmann, San Mateo, CA, 1994.

[5] R.G.G. Cattell, editor. The Object Database Standard: ODMG-93, version 1.2.
Morgan-Kaufmann, San Mateo, CA, 1996.

20

[6]
[7]

[11]

[12]

[13]

CHAPTER 1

O. Deux. The O; system. Communications of the ACM, 34(10):34-48, October
1991.

Oscar Diaz and P. M. D. Gray. Semantic-rich User-defined Relationships as a
Main Constructor in Object Oriented Databases. In Conf. on Object-Oriented
Databases, Windermere, July 1990.

M.A. Ellis and B. Stroustrup. The Annotated C++ Reference Manual. Addison-
Wesley, Reading, MA, 1990.

A. Goldberg and D. Robson. Smalltalk 80: The language and its implementation.
Addison-Wesley, 1983.

A. Heuer, J. Fuchs, and U. Wiebking. OSCAR: An object-oriented database
system with a nested relational kernel. In Proc. of the 9th Int. Conf. on Entity-
Relationship Approach, Lausanne, pages 95-110. Elsevier, October 1990.

A. Heuer and P. Sander. The LIVING IN A LATTICE rule language. Data and
Knowledge Engineering, 9(3):249-286, 1993.

A. Heuer and M.H. Scholl. Principles of object-oriented query languages.
In Proceedings GI-Fachtagung “Datenbanksysteme fir Biiro, Technik und Wis-
senschaft”, Kaiserslautern, pages 178-197. Springer, Informatik-Fachbericht 270,
1991.

A. Kemper, G. Moerkotte, H.-D. Walter, and A. Zachmann. GOM — a
strongly typed, persistent object model with polymorphism. In Proceedings GI-
Fachtagung “Datenbanksysteme fir Biiro, Technik und Wissenschaft”, Kaiser-
slautern, pages 198-217. Springer, Informatik-Fachbericht 270, 1991.

M. Kifer and G. Lausen. F-Logic: A higher order language for reasoning about
objects, inheritance, and scheme. In Proc. ACM SIGMOD Conference on Man-
agement of Data, pages 134-146. ACM New York, May 1989.

Bertrand Meyer. Eiffel: The Language. International Series in Computer Science.
Prentice-Hall, Englewood Cliffs, 1993.

0> Technology. C++ Interface to O2, March 1995.
Object Design Inc. ObjectStore C++ API User Guide, June 1995.
Poet Software GmbH. Poet — Programmer’s € Reference Guide, 1994.

James Rumbaugh. Relations as Semantic Constructs in an Object-Oriented Lan-
guage. In Proceedings of the ACM Conference on Object-Oriented Programming:
Systems, Languages and Applications (OOPSLA), pages 466-481, 1987.

H.-J. Schek and M.H. Scholl. The relational model with relation-valued at-
tributes. Information systems, 11(2):137-147, June 1986.

Jirgen Schlegelmilch. An Advanced Relationship Mechanism for Object-
Oriented Databases. Technical Report 19/1996, University of Rostock, Computer
Science Dept., 1996.

Servio Logic Development Corp. GemStone Product Overview, 1991.

M. Stonebraker and G. Kemnitz. The POSTGRES next generation database
management system. Communications of the ACM, 34(10):78-92, October 1991.

