
�
ROLE�BASED PERSISTENCE

J�urgen Schlegelmilch

University of Rostock�Computer Science Dept�� D������ Rostock� Germany

ABSTRACT

In most object�oriented systems� references are the only way to express the coupling

of objects� They de�ne the visibility among objects� associations of objects� and often

lifetime dependencies� We present a relationship construct that separates these three

issues� thereby allowing to reduce dependencies and enhance potential parallelism�

In this paper� we concentrate on the �exible de�nition of lifetime dependencies� The

persistence of an object is determined by the connections it has with other objects�

� INTRODUCTION

In object�oriented systems� objects communicate with and depend on other
objects� The connections are often modeled by references between objects�
whereas in speci�cation models general relationships are used� References de�
�ne a tight coupling� while relationships can keep the coupling as low as needed�
in order to enable inter�object concurrency� One form of coupling is lifetime
dependency� or persistence� In many systems� the lifetime of an object depends
on that of objects referencing it� In this paper� we present a relationship mech�
anism with a persistence model that separates the issues of connections� visibil�
ity� and lifetime dependencies between objects� This allows the programmer to
choose only those dependencies that are needed� thereby reducing cohesion be�
tween objects� This work is part of the OSCAR� project ��	
 where we develop
an object�oriented database management system� OSCAR is based on the da�

�Object Management System for Complex Applications� Approach� Relational

�



� Chapter �

tabase model EXTREM�� o�ering all structural elements of an object�oriented
database management system�

Road Map The remainder of this paper is organized as follows� The �rst
part introduces our relationship proposal� Section 
 motivates our decisions
in favor of relationships and sketches the idea of the relationship mechanism�
while Section � de�nes its syntax and semantics� Section � describes operations
on relationships� and Section � introduces derived relationships� The second
part of the paper presents the concept of role�based persistence in Section ��
which is used to model other persistence models in Section �� Finally� Section �
summarizes the contributions�

� MOTIVATION

Many object�oriented speci�cation models o�er several relationship types� e�g�
aggregation� association� and message connection� Apart from the set of re�
lated objects� they describe interaction� integrity constraints� attributes of the
connection� and lifetime dependencies� With a relationship construct� we can
specify these properties as needed� thereby tuning the amount of cohesion be�
tween the related objects� In contrast� the references that most object�oriented
programming languages use to connect objects have a �xed set of these prop�
erties�

References connect one object to another� so they are inherently binary�

They combine connection and visibility� the referenced object is made
visible to the referencing one� thus� references are directed�

In some systems ���� �� �� 


� a reference also de�nes a lifetime dependency�
the target object depends on the referencing object�

No attributes can be given to describe the connection�

References are often stored in instance variables� thus spreading the relationship
among several objects and classes� To �nd a related object� we have to access
the state of an object� thereby blocking concurrent accesses to it� A detailed
criticism on relationships based on references is given in ���
 and �
�
�

�Extended Relational Model



Role�Based Persistence �

The Relational Approach The relational model has more capabilities to
model relationships� In fact� everything in a relational database is modeled as
a relationship between values� Relations can be interpreted to either represent
a set of entities� or denote a relationship via foreign key dependencies�� By
replacing foreign keys with object identi�ers� we get a solid base for modeling
relationships without sacri�cing the advantages of the relational model�

We interpret the tuples in a relation as one�to�one connections between the
objects denoted by their object identi�ers� Other components of the tuple
describe the connection between the objects� With this relational background�
we can use standard relational query languages to handle our relationships� and
bene�t from the research in the relational database area�

In this article we use the algebra for nested relations from �
	
 with the following
syntax �with relations R� S� attributes a� n� lists of attributes L� and predicates
pred��

operator syntax operator syntax operator syntax
instantiation R selection ��pred 
�R� projection ��L
�R�
natural join R �� S renaming ��n� a
�R� union R � S

nesting ��n�L
�R� unnesting ��n
�R� intersection R � S

To relate one object o to n others� we need n tuples in the relation� each
tuple describing a one�to�one connection� With nested relations and a suitable
algebra� these n tuples can be nested into one with an attribute holding o

and another� relation�valued attribute holding unary tuples with the n objects�
Since this structure is only one view supporting object o� we prefer the �at
relational model for speci�cation�

Bare relations do not provide any kind of access from an object to a related
one� nor do they specify lifetime dependencies among them� We therefore
add constructs to declare access methods and dependencies� keys and general
integrity constraints�

� THE RELATIONSHIP MECHANISM

The database model EXTREM The EXTREM model supports both val�
ues and objects� Values are grouped into types� objects are grouped into classes�
The classes are divided into abstract and free ones and placed into an inheri�
tance lattice formed by the subset relation on class extents� Each type and class

�Mixed cases are possible and can be seen as an optimization�



� Chapter �

describes the structure and behavior of its elements by typed attributes and
methods� Each object belongs to exactly one abstract class and may belong
to several free classes� it can move into and out of subclasses� and has a set of
values for the attributes of the classes it belongs to� Objects of subclasses may
be substituted for those of super�classes� for method calls� dynamic binding
picks the most speci�c implementation regardless of the variable the object is
bound to� In contrast� values can only be used with their real type� and imple�
mentations for their methods are linked statically� Both types and classes have
a set extent of their values and objects� resp� In the sequel� Types is the set of
all types� and Classes the set of all classes�

Relationships In the original EXTREM database model ��	
� attributes are
allowed to have a class type� We replace this kind of attributes by relationships
with relationship attributes� and access methods in classes�

De�nition �relationship attribute�
A relationship attribute is an object a with a name token�a� and a type
type�a� � Types � Classes� token has to be globally unique� We call a a role if
type�a� is a class type�

De�nition �relationship�
A relationship is an object R with a set attrs of relationship attributes� a set
vital �R� � attrs�R� of roles� a set extent�R�� and a set cons�R� of constraints
�predicates��

The domain of R is de�ned as

dom�R� � fc j c � ftoken�a� � � extent�type�a�� j a � attrs�R�gg

i�e� elements of dom�R� are sets of constant functions having the names of the
relationship attributes� we call these sets connections� We write a�c� to denote
the result of the function a in the connection c� The set attrs�R� is often called
the schema of R�
Persistence� The set vital �R� � attrs�R� of roles speci�es the roles keeping
their objects persistent �see Section ���
Extent� Although a relationship looks much like a set�of�tuples type� connec�
tions have to be created and deleted explicitly like objects� The set extent�R� �
dom�R� holds the connections of R� c � extent�R� represents a connection be�
tween the objects speci�ed by its roles which is further described by the other
relationship attributes�
Playing roles� An object o plays the role r in the connection c i� r�c� � o� it
plays the role in the relationship R i� �c � extent�R� � r�c� � o�
Constraints� The set cons�R� of a relationship R is a set of predicates of �rst



Role�Based Persistence �

order predicate logic with quanti�ers over the schema of R and global names�
it restricts the set of connections extent�R�� R is called consistent if and only
if �p � cond�R� � extent�R� j� p�

Syntax We use the following syntax to de�ne relationships��

relationship ���relationship relation�name
� rel�de	nition �

f� key�de	nitiong

� constraint�

� persistence�
f� access�de	nitiong �

rel�de	nition ���schema�de	nition j query�expression
schema�de	nition ���col�de	nition f�col�de	nitiong
col�de	nition ���column�name� type
cardinality�
cardinality ����limit
�limitI�
�limit
�limitI��	
limit ���Number
limitI ���limit j

key�de	nition ���key column�name f�column�nameg
constraint ���with condition
persistence ���vital role�name f�role�nameg
access�de	nition ���in role�name�att�name as � query�expression �

The semantics of these constructs is explained in the sequel using the example in
Figure �� The relationship family models a ternary relation between persons�
Each Person can be the child of exactly one �father�mother� combination�
but for some Persons we do not know the parents� Person is the union of
Female and Male� Each Male can be father arbitrarily often with di�erent
Females� and vice versa with Females and mother� Parents access their partners
and children via the method family� and children access their parent tuple via
the method parents�

Semantics The rel�de	nition de�nes the schema of the new relationship R�
In the schema�de	nition clause� we de�ne the schema explicitly� Each col�
de	nition de�nes a relationship attribute in attrs�R� with the given name and
type� If the name token has already been used in another relationship de�ni�
tion� it denotes the same relationship attribute� so the types must be identical�

�Typewriter font denotes keywords� non�terminal symbols appear in italics� Brackets � �
enclose optional parts� parts in braces fg may be repeated zero or more times� and the bar j
separates alternatives� Concatenation has precedence over j� parentheses � � can be used to
change precedence�



� Chapter �

relationship families

�father�Male�����
	�

mother�Female�����
	�

child�Person������	��

vital father�mother�

in father�family as

���mother�child	���father
this	�families����

in mother�family as

���father�child	���mother
this	�families����

in child�parents as

���father�mother	���child
this	�families����

Figure � Relationship between classes Male� Female� and Person

Using the query�expression instead of the schema�de	nition de�nes a derived
relationship� we discuss this in Section ��

The cardinality clause for an attribute a adds cardinality constraints to the
set cons�R�� This clause de�nes one or two intervals of N � f	g� with 	
denoted as 
� intervals n � n are abbreviated to n� The �rst interval is called
the inner range and restricts the number of connections that only di�er in this
role� therefore� its lower bound must not be zero� The second interval is called
the outer range and speci�es� how often an object may play the role a in this
relationship� This range is only needed for roles� multiple occurrences of a
value are unrelated to each other� while multiple occurrences of an object share
the same state� For the inner range �n � m
 and outer range �n� � m�
 of a role
a� the following constraints are added to cons�R��

�t � ��ai � attrs�R�	 ai 
� a
�R� � n �
�����
�

ai ��a
ai � ai�t�
�R�

��� � m �����

�o � extent�type�a�� � n� �
����a � o
�R�

�� � m� ���
�

Example In Figure �� for role mother the formulas ����� and ���
� read

�e � ��father	 child
�families� �
� �

����father � father�e� � child � child�e�
�families�
�� � �

�d � Female � 	 �
����mother � d
�families�

�� � 	
This means� that any combination of father and child has exactly one mother�
and a Female does not have to be a mother� but could be arbitrarily often�



Role�Based Persistence �

If the upper bound of the outer range of a role is �� the role is a key for the
relationship� The key�de	nition clause allows the de�nition of additional com�
pound keys� The constraint clause takes a predicate of �rst order predicate logic
over the columns of the relationship� Both clauses insert suitable predicates
into the set cons�R��

The persistence clause inserts the roles in its argument list into the set vital�R��
This set de�nes role�based persistence and is discussed in detail in Section ��

��� De�ning Visibility

With a relationship� we can describe connections between objects� but the
related objects cannot access each other directly� Therefore we need to de�ne
access methods for the roles� These methods are not part of the relationship
but of the classes of the roles� The access�de	nition clause de�nes an access
method with name att�name in the class of role� In their implementation�
these methods can e�g� select from the relationship those connections where
the current object plays the role in question� thus returning a local view on
the relationship� Since objects in �object�preserving� views are fully updatable
��

� access methods o�er the functionality of references� except for establishing
and breaking up a connection� In fact� access methods give more functionality�
as they can provide transitive� re�exive� or symmetric closures of relationships
as proposed for the ODMG��X standard in ��
� They also make visibility
independend from other properties of the relationship�

Example In Figure �� three access methods are de�ned� Both mother and
father have a method family returning the combinations of a child and the
other parent� and the children have a method parent computing the tuple of
Female and Male that are her or his parents�

Several connections sharing some objects in a role can be interpreted as a
set�valued connection� With nested relational algebra� access methods can
restructure the relationship to make such connections visible� By using �at
relations� we do not impose a �xed view on the relationship but leave it to the
access methods to present structured views�

Example In Figure �� the access method family for role father can group
the children according to the mother� with the implementation

��children� child
���mother	 child
���father � this
�families���



� Chapter �

The result is a relationship with schema fmother	 childreng� where children
is a set of tuples with one component child� The extent contains tuples of
mothers together with the set of children she has with the father in question�

Related Work Postgres �
�
 uses a similar approach in a relational environ�
ment to provide access between tables that are connected via foreign keys� It
allows to use procedures as attributes of a relation� Reading the attribute value
returns the result of the procedure�
���
 describes simple access methods to encapsulate insertions� deletions� and
selections on relationships� No operators for restructuring relations are pro�
vided�
��
 discusses derived attributes for relationships� these attributes are read�only
references and cannot o�er a restructured view onto the relationship� The scope
of roles and attributes of a relationship can be restricted to the participants�
so they look like attributes of the objects� The system automatically de�nes
methods to insert and delete connections for the relationship as well as for the
derived attributes in the objects�

� OPERATIONS ON RELATIONSHIPS

Only generic operations are needed to manage the set of connections of a rela�
tionship� INSERT adds a connection� and DELETE deletes a connection speci�ed
by a key� Of course� the resulting relationship has to be consistent� Reactions
on integrity violations are �exible �
�
� Retrieval is done using any of the rela�
tional query languages� In our database system OSCAR� all query languages
include a complete nested relational base language that we can use to query
relationships� To maintain referential integrity� the runtime system propagates
deletions of objects to all relationships� if an object o gets deleted� all connec�
tions in which o plays a role are deleted from all relationships� too� Otherwise�
there would be invalid object identi�ers in relationships�

	 DERIVED RELATIONSHIPS

In relational database systems� we have base tables that are managed by explicit
INSERT and DELETE operations� and views that are de�ned by a query� The
relationships we discussed so far correspond to base tables� but our relational
approach allows us to de�ne views as well� We call them derived relationships�



Role�Based Persistence �

and de�ne them using the query�expression alternative of the rel�de	nition
clause� Both the schema and the extent of a derived relationship� as well as the
set of integrity constraints� are de�ned by the query expression� The de�ning
query can be formulated in any relational query language� These languages
are e�ciently implamentable� optimizable� and are guaranteed to deliver �nite
results�

Example An example of a derived relationship is the parents relationship�
that can be derived from the families relationship in Figure � like this�

relationship parents

� ��parent� father
���father	 child
�families��
���parent� mother
���mother	 child
�families����

The parents relationship is the set of tuples of a parent and one of its children�
the schema is fparent�childg� This is only possible because the type of the
parent role can be generalized from Male and Female� resp�� to Person�

Discussion Object�oriented query languages like the ODMG��� standard
query language OQL ��
 or our object algebra ABRAXAS ��	
 o�er object�
generating clauses to be able to represent new combinations of existing ob�
jects� If these clauses are evaluated n times� n objects would be generated
for the same combination� To avoid these multiple objects� the new object
identi�ers are usually derived from the combination by a function ���� ��
 so
that a second evaluation of the object�generating clause yields the same set of
objects� So� these object identities are functionally dependent on the state of
the object� instead of only determining it� The persistence of the generated ob�
jects is also questionable� they strongly depend on the objects they reference�
Usually� it is just the other way round� a referenced object depends on the
referencing object� not vice versa� With our relationship mechanism� the need
for object�generating queries is much weaker� as new combinations of objects
can be modeled by derived relationships�
The integration of relationships into OSCAR�s query languages is beyond the
scope of this paper�

Related Work In ���
� �

� and ��
� connections are always established and
removed by explicit action� ���
 only provides operations for membership test�
simple selections� and full scans� and leaves it to the programmer to code higher
level operations� This set of operations is meant for access methods� not for
views� ��
 includes a relational�like algebra that is capable of computing new
relationships� but the language only allows to de�ne snapshots� not views� So�



	
 Chapter �

none of these approaches supports derived relationships�
��
 does not discuss intensional relationships either� but the underlying language
Prolog would be able to provide derived relationships� Connections are modeled
as objects� and objects are implemented as sets of facts� Prolog can derive new
facts from known ones� thus creating derived connections� but it would then
have the problems we mentioned for object�generating queries� However� ��

already admits to basically ignore the object identity of connections�


 ROLE�BASED PERSISTENCE

Objects have to be created and eventually destroyed� While it is usually clear
when to create a new object� it is often unknown when a particular object can
be deleted� Most procedural programming languages� e�g� C�� ��
� leave it to
the programmer to determine this situation and to explicitly delete the object�
Others� e�g� Smalltalk ��
 and Ei�el ���
� employ a garbage collector to delete
objects� The garbage collector will delete an object if it is unreachable� i�e� there
is no reference to it� Databases can extend the life of an object beyond the end
of an application by storing it� we then call the object persistent� in contrast
to transient objects that are deleted at the end of the application� However�
not all objects are worth being made persistent� and there are di�erent policies
how to determine which objects are� and which are not�

The programmer explicitly marks objects to be persistent� To get them
out of the database� he has to either make them transient again� or delete
them� So� persistence is managed by the programmer�

The programmer describes declaratively� which objects should be persis�
tent� The system will then keep exactly those objects persistent that match
the given description� freeing the programmer from the responsibility to
manage persistence per object�

Our approach For our database system OSCAR� we follow the second ap�
proach� The basic idea is to determine the relevance of an object to other
objects� If an object is important for other objects� it will not be deleted be�
fore them� This dependency is described by a connection between these objects�
Objects playing a role are dependent on the objects playing the other roles in
the same connection� We then distinguish ordinary roles from important ones�
and call the latter vital roles� The persistence clause allows to declare a role to
be vital� for a relationship R� vital�R� is its set of vital roles�



Role�Based Persistence 		

De�nition The de�nition of role�based persistence is�

Let Relationships be the set of all relationships� Then the set
�

R�Relationships

fo j �c � extent�R�	 r � vital�R� � o � r�c�g

is the set of persistent objects�

A garbage collector only has to mark the objects in this set� and delete all
others� To do so� it does not have to access an object�s state and can therefore
work in parallel with other computations on the objects� Also� relationships
are usually much smaller in size than the whole set of objects� thus providing
more locality of access�

Example In Figure �� we have two vital roles� namely mother and father�
Therefore� for any Person� the parents are persistent� Since the class Person
is the union of the classes Female and Male� the child may itself be a father

or mother� Therefore� all ancestors of a persistent person are also persistent�
However� without another relationship with a vital role for a person� no object
will be persistent at all since the parent�child relationship should be acyclic�

Discussion Role�based persistence is very �exible� If the vital role is the only
one in a relationship� an object playing it does not depend on other objects at
all� It will be persistent until it is deleted from the relationship� If there are
n ordinary roles besides the vital one� objects in this role depend on the other
n objects� if any of them is deleted� the connection is also deleted� with the
object losing the vital role� Note� that the database system OSCAR also has
an explicit DELETE command that deletes an object regardless of the roles it
plays�

Combining role�based persistence with derived relationships� we achieve full
declarative persistence� any query can de�ne a derived relationship� and if we
declare its roles to be vital� then all objects in the query result are persistent�
Of course� to evaluate the query it is generally required to access the object�s
state� this increased cohesion is unavoidable if objects are related because of
the state they have� Note that being vital is not a property of a role� the rela�
tionship de�nes which roles are vital in its schema� Therefore� roles in a derived
relationship are not necessarily vital even if they are in a base relationship�

Related Work We know of no other persistence model comparable in expres�
siveness with role�based persistence plus derived relationships� The persistence



	� Chapter �

model in ��
 is equivalent to pure role�based persistence� For each relationship�
the programmer de�nes the runtime system�s reaction on the deletion of ob�
jects and of connections� Alternatives are propagation of deletion to related
objects and rollback� While this approach can achieve the same e�ects as pure
role�based persistence� it is not as simple to understand� and less declarative�
Without derived relationships� it cannot o�er full declarative persistence�
The approach of �

 de�nes general relationships and a binary� acyclic rela�
tionship has�part for modeling whole�part relations� this relationship is very
close to a reference� The part object in this relationship can be declared to be
dependent on the whole object� It will be deleted with the last whole object
it is connected to�
��
 distinguishes optional and obligatory relationship attributes� Deleting an
object in an optional attribute has no e�ect on the connection� while for those
in obligatory attributes the whole connection is deleted� The underlying lan�
guage Prolog does garbage collection based on reachability by references from
a root set�
Other proposals for relationship mechanisms like ���
 do not discuss lifetime
dependencies�

��
 demands persistence to be orthogonal to types and transparent to programs�
this implies that the persistence model has to be formulated without classes�
and it must not require special attributes or methods� Role�based persistence
meets both demands� relationships can hold values of any type and objects of
any class� and since persistence is realized outside of classes and types� programs
handle transient and persistent data transparently�

� COMPARISON

��� Basic Assumptions

We now show for a number of persistence models� how they can be emulated
within our framework� The aim is to have the same set of objects persistent at
the end of a transaction� given the same sequence of operations� The emulation
is done by giving transformation rules to map the constructs of a persistence
model to declarations and operations for our database prototype OSCAR� In
addition to the mapping� a constant part may be needed to completely cover
the model we are emulating� We use C���like syntax to keep the mapping
simple� ignoring any syntactic di�erences between the programming languages�



Role�Based Persistence 	�

We need only few concepts of the OSCAR database system� namely relation�
ships with role�based persistence� and the generic DELETE command� Since the
declarations of classes are always persistent in OSCAR� there is no need to
mark classes for inclusion into a database schema� For simplicity� we assume
the existence of a null value NULL although OSCAR has none� The class Object
is the top element of the class lattice in OSCAR� any other class is a subclass
of Object�

��� Replacing References

One�to�One Since almost all programming languages use references instead
of relationships� we have to de�ne a replacement for them� If we have a reference
named v to an object of class Y in a class X � we replace this declaration with
the following relationship�

relationship X�to�Y �in�v �aX�X���
��	�aY�Y �����
	��

in X�v as ���aY 	���aX
this	�X�to�Y�in�v����

The cardinalities ensure that each object in class X is related to one object in
class Y � but there may be many X objects related to the same Y object� The
access method v already provides read�access to the related object� so we only
map assignments to the variable to operations on the relationship�

expression OSCAR equivalent
o�v
y� DELETE �aX
o�aY 
o�v� FROM X�to�Y �in�v�

INSERT �aX
o�aY 
y� INTO X�to�Y �in�v�

Of course� the DELETE and INSERT operation have to be performed inside a
transaction to make the change atomic and keep the relationshipX�to�Y �in�v

consistent�

One�to�Many References from an object of class X to a set of objects of
class Y require only a minor change to the cardinalities of the relationship� For
a reference v of type set�Y � in class X � we use the following relationship�

relationship X�to�Y �in�v �aX�X���
���
	�aY�Y ���
���
	��

in X�v as ���aY 	���aX
this	�X�to�Y�in�v����

The mapping of assignment operations is simpler for this kind of reference�



	� Chapter �

assignment OSCAR equivalent
o�v�
y� INSERT �aX
o�aY 
y� INTO X�to�Y �in�v�

o�v�
y� DELETE �aX
o�aY 
y� FROM X�to�Y �in�v�

Again� the access method already covers read�access to the related object�

With these mappings� we can now model any kind of reference in the EXTREM
data model with relationships� All mappings can be performed mechanically
by a preprocessor�

��� Persistence by Inheritance

Description In this persistence model� persistence of an object depends on
its class membership� A special class de�nes methods and instance variables
to make an object persistent� In the C�� binding of the ODMG��� standard
��
 this class is named Persistent�Object� A class is called persistent if it
inherits from this special class� and only objects of persistent classes can be
persistent� An object of a persistent class is persistent if it is assigned to a
database� and transient otherwise� This assignment is done by a parameter
db to the operator new specifying a database that the new object has to be
assigned to� The method delete object�� of class d�Ref deletes the object
bound to a reference from both memory and database� While the �rst version
of the ODMG��� standard ��� p���
 de�ned three lifetime models� the revised
version ��
 only distinguishes transient and persistent objects�

Implementations TheC���based ODBMS Poet ���
 closely follows the idea
of the ODMG��� persistence model� In Poet�s native API� the special class is
called PtObject� and the assignment to a database db is done with the method
Assign�db� of that class� Unassigning an object with the method UnAssign��

of class PtObject makes it transient� However� the object is not automatically
deleted as required by the ODMG��� standard� this must be done manually
with C���s operator delete�

The ODBMS O� ��
 claims to be ODMG�compliant� but its C�� interface
���
 de�nes the class Persistent�Object with no instance variables� and all
methods of this class including delete object�� do nothing� Persistence in the
O� system is de�ned by reachability �see Section ����� assigning or unassigning
an object has no e�ect on its persistence� Thus� O� follows the persistence
model of ODMG��� only syntactically�



Role�Based Persistence 	�

Mapping To model the ODMG��� persistence model� we provide a class and
a relationship in the constant part of the mapping�

class Persistent�Object ���

relationship is�Persistent �theObject�Persistent�Object��

vital theObject�

Like O�� we do not really need a special class for persistence� We now map
functions of the C�� binding of ODMG��� to operations on the relationship
is�Persistent�

ODMG��� function call OSCAR equivalent
v
new�db� Class������ v
new Class������

INSERT �theObject
v� INTO is�Persistent�

o��delete�object��� DELETE o�

Thus� to make an object persistent� we simply insert it into the relationship
is�Persistent� the role theObject is vital and will therefore prevent the
object from being deleted by the garbage collector� The DELETE command will
delete the object in spite of this role�

��� Persistence by Reachability

Description This persistence model is used in the ODBMSs O� ��
� GemStone
�


� and in the programming language Ei�el ���
� It is a declarative persistence
model based on references� The set of persistent objects is de�ned as follows�

Let ref � Object 
 Object be the reference relation� de�ned by
�o	 s� � ref �� o references s � and ref � its transitive closure� Then
the set of persistent objects is

fo j �r � root � �r 	 o� � ref �g

for a set root of initially persistent objects�

In O�� the set root is the set of objects bound to persistent variables called
names� In GemStone� it is the standard dictionary Smalltalk� and in Ei�el� it
is formed by all objects bound to variables on the stack or in the data segment�



	� Chapter �

Mapping To achieve persistence by reachability in our persistence model� we
replace any reference by a binary relationship as described in Section ��
� and
add the declaration

vital aY �

to each relationship� this makes the role of the referenced object vital� An object
will play the vital role until the connection is deleted from the relationship�
This either happens on assignment due to the mapping de�ned in Section ��
�
or automatically on deletion of the referencing object� The relation ref in the
de�nition of persistence by reachability is the union of all the relationships we
get as replacements for references�

For the root set� we only show how to model the approach of the ODBMS
O�� The idea is to have a relationship with one vital role and a relationship
attribute to hold the name of the persistent variable�

relationship root�set �name�String�theObject�Object�����
	��

vital theObject�

The cardinalities imply that name is a key for the relationship� to include set�
valued names� we would have to change them as shown in Section ��
 for
the mapping of set�valued references� or create a second relationship with the
adapted cardinalities�

We then map access operations of O� to operations on this relationship�

O� operation OSCAR equivalent
create name v INSERT �name
v�theObject
NULL� INTO root�set�

delete name v DELETE �name
v� FROM root�set�

v ��theObject
���name �v
�root set��
v
y� DELETE �name
v� FROM root�set�

INSERT �name
v�theObject
y� INTO root�set�

Creation and deletion of a name are mapped to insertion and deletion of a
connection in the relationship root�set� Read�access to a name v is mapped
to a query on root�set� note that we have to cast the resulting object to
the desired type� Assignment of a new object to a name is handled similar to
assignment to a reference in Section ��
�



Role�Based Persistence 	�

��	 Persistence by Creation

Description This is the approach taken by ObjectStore ���
� An object is
persistent if it is created in persistent memory� There are no restrictions on
classes or types� In contrast to the ODMG��� approach� inheritance from a
special class is no prerequisite for persistence�

Syntactically� ObjectStore strongly resembles the persistence�related part of
the C�� binding of ODMG���� The operator new has an additional argument
called placement that determines where to place the new object� If the place�
ment is a database� the object will be created in the database and therefore be
persistent� Unlike Poet �see Section ����� an object cannot become persistent
after its creation� and has to be persistent until it is deleted� Persistence by
creation is therefore rather in�exible�

Mapping To model this persistence model in our approach� we use a mapping
very similar to that presented in Section ���� The class Persistent�Object
was only necessary for syntactical compliance with the ODMG��� standard� so
we can discard it safely� The constant part of the mapping therefore consists
of only one relationship�

relationship is�Persistent �theObject�Object��

vital theObject�

The operations of ObjectStore di�er from the ODMG C�� binding only in
one point� instead of the method Persistent�Object��delete�object��� the
standard C�� operator delete has to be used to delete objects�

ObjectStore operation OSCAR equivalent
v
new�db� Class������ v
new Class������

INSERT �theObject
v� INTO is�Persistent�

delete o� DELETE o�

To make persistent objects accessible� ObjectStore o�ers persistent variables
similar to that in O�� However� since persistence by creation is independent of
references� persistent objects can become unreachable� ObjectStore o�ers no
tool to remove such objects from the database� We note that ObjectStore can
make values persistent�



	� Chapter �

��
 Persistence on Request

Description In the database programming language GOM ���
� an object
is persistent if it has been sent the message persistent� GOM requires the
programmer to mark classes with the keyword persistent to make the type
information persistent� this is not needed in OSCAR�

Mapping The mapping to role�based persistence is simple� The constant part
is the same as for the policy presented in Section ����

relationship is�Persistent �theObject�Object��

vital theObject�

The method call persistent to an object is mapped to inserting the object
into the relationship�

GOM operation OSCAR equivalent
o��persistent� INSERT �theObject
o� INTO is�Persistent�

o��transient� DELETE �theObject
o� FROM is�Persistent�

Note that in GOM there is no way to make a persistent object transient�
method transient above is a possible extension� With our approach� this
can be achieved by deleting the object from the relationship is�Persistent�

In GOM� variables can be marked to be persistent but this only means that
their declaration is persistent� they are not entry points as described in Sec�
tion ���� i�e� they do not make the referenced objects persistent�


 CONCLUSION

In this paper� we introduced general relationships as a �exible way to describe
cohesion between objects� Both visibility and lifetime dependency can be added
separately� allowing to keep coupling between objects at a minimum� Our per�
sistence model has been shown to be at least as capable as the persistence
models found in other systems� even without taking advantage of derived rela�
tionships� Our approach combines the following achievements�



Role�Based Persistence 	�

�� The properties of connection� visibility� and persistence are separated from
each other� References inherently combine connection with visibility� and
persistence by reachability combines all three properties�


� The concept of derived relationships helps reducing redundancy and avoid�
ing inconsistencies� It also adds expressive power to our persistence model�

�� Role�based persistence decouples objects� Objects can depend on other
objects without being made visible� and their lifetime no longer depends
on the state of other objects�

Besides integrating our relationship construct into the database prototype OS�
CAR� we plan to implement it on top of the commercial ODBMS O�� since
its O�SQL query language supports derived relationships� However� the per�
sistence concept will not be implementable in O�� connections will be imple�
mented as tuples of references� so related objects will be kept persistent by the
connections they are in� O� does not have references without persistence�

Acknowledgements

We would like to thank the anonymous referees for their valuable comments
improving the quality of this paper�

REFERENCES

�	
 Antonio Albano� Giorgio Ghelli� and Renzo Orsini� A relationship mechanism for
a strongly typed object�oriented database programming language� In Proceedings
of the ��th International Conference on Very Large Data Bases� pages ���
����
September 	��	�

��
 W� Andreas and T� Gorchs� Relationship service� Technical report� Object
Management Group� 	���� OMG TC Document ���		���

��
 Malcolm P� Atkinson and Ronald Morrison� Orthogonally Persistent Object
Systems� VLDB journal� ����� July 	����

��
 R�G�G� Cattell� editor� The Object Database Standard� ODMG���� Morgan�
Kaufmann� San Mateo� CA� 	����

��
 R�G�G� Cattell� editor� The Object Database Standard� ODMG���� version �	
�
Morgan�Kaufmann� San Mateo� CA� 	����



�
 Chapter �

��
 O� Deux� The O� system� Communications of the ACM� ���	�����
��� October
	��	�

��
 Oscar Diaz and P� M� D� Gray� Semantic�rich User�de�ned Relationships as a
Main Constructor in Object Oriented Databases� In Conf	 on Object�Oriented
Databases� Windermere� July 	����

��
 M�A� Ellis and B� Stroustrup� The Annotated C�� Reference Manual� Addison�
Wesley� Reading� MA� 	����

��
 A� Goldberg and D� Robson� Smalltalk �
� The language and its implementation�
Addison�Wesley� 	����

�	�
 A� Heuer� J� Fuchs� and U� Wiebking� OSCAR� An object�oriented database
system with a nested relational kernel� In Proc	 of the �th Int	 Conf	 on Entity�
Relationship Approach� Lausanne� pages ��
		�� Elsevier� October 	����

�		
 A� Heuer and P� Sander� The LIVING IN A LATTICE rule language� Data and
Knowledge Engineering� ��������
���� 	����

�	�
 A� Heuer and M�H� Scholl� Principles of object�oriented query languages�
In Proceedings GI�Fachtagung �Datenbanksysteme f�ur B�uro� Technik und Wis�
senschaft�� Kaiserslautern� pages 	��
	��� Springer� Informatik�Fachbericht ����
	��	�

�	�
 A� Kemper� G� Moerkotte� H��D� Walter� and A� Zachmann� GOM � a
strongly typed� persistent object model with polymorphism� In Proceedings GI�
Fachtagung �Datenbanksysteme f�ur B�uro� Technik und Wissenschaft�� Kaiser�
slautern� pages 	��
�	�� Springer� Informatik�Fachbericht ���� 	��	�

�	�
 M� Kifer and G� Lausen� F�Logic� A higher order language for reasoning about
objects� inheritance� and scheme� In Proc	 ACM SIGMOD Conference on Man�
agement of Data� pages 	��
	��� ACM New York� May 	����

�	�
 Bertrand Meyer� Ei�el� The Language� International Series in Computer Science�
Prentice�Hall� Englewood Cli�s� 	����

�	�
 O� Technology� C�� Interface to O�� March 	����

�	�
 Object Design Inc� ObjectStore C�� API User Guide� June 	����

�	�
 Poet Software GmbH� Poet � Programmer�s � Reference Guide� 	����

�	�
 James Rumbaugh� Relations as Semantic Constructs in an Object�Oriented Lan�
guage� In Proceedings of the ACM Conference on Object�Oriented Programming�
Systems� Languages and Applications �OOPSLA�� pages ���
��	� 	����

���
 H��J� Schek and M�H� Scholl� The relational model with relation�valued at�
tributes� Information systems� 		����	��
	��� June 	����

��	
 J�urgen Schlegelmilch� An Advanced Relationship Mechanism for Object�
Oriented Databases� Technical Report 	��	���� University of Rostock� Computer
Science Dept�� 	����

���
 Servio Logic Development Corp� GemStone Product Overview� 	��	�

���
 M� Stonebraker and G� Kemnitz� The POSTGRES next generation database
management system� Communications of the ACM� ���	�����
��� October 	��	�


