
Class and Type Hierarchies�

Extension� Constraining� and Roles

J�rgen Schlegelmilch�

Abstract

With object�orientation� we model the world with objects and group objects with similar

properties into classes� There are then two ways to build up a hierarchy of classes� extension

adds new properties to create a subclass� while constraining restricts the values of existing

properties� Programming languages support only subclassing by extension� but databases

o�er also subclassing by constraining via selection views� However� constraining is considered

not type�safe because an object may change to no longer meet the selection criteria� thus

leaving the view and dropping its type� references of this type to this object will then become

invalid�

We show that support for roles allows both modes to be combined into a database pro�

gramming language� Classes de�ned by constraining are a special case of role classes� so

supporting roles allows for constraining� Type�safety is achieved by using relationships in�

stead of references�

Keywords� Object�oriented programming languages� object�oriented data models� extension
of types� constraining classes� dynamic roles

� Overview

Programs manipulate elements of domain models� and their data model o�ers the means to
de�ne them� Object�oriented data models �OODMs� describe these elements as objects and
group objects with similar properties into classes� From already de�ned classes� we can derive
subclasses in two ways	 either by adding new properties �extension�� or by placing constraints
on existing properties� While extension is o�ered by almost all object�oriented programming
languages �OOPLs�� constraining is considered not type�safe and is therefore unsupported�

Object�oriented database systems �OODBSs�� on the other hand� o�er constraining in the form of
selection queries� used as integrity constraints for derived classes	 a set of objects can be de�ned
by posing constraints on the elements of a larger set� However� current database programming
languages do not regard such a set as a class�

We show that support for roles allows both extension and constraining to be supported in a
database programming language without compromising type�safety� First� we give an infor�
mal introduction in Section
 and review existing solutions in Section �� Then we provide the
necessary de�nitions in Section � and explain them using the running example in Section � In

�University of Rostock� computer science department� database research group� D������ Rostock� Germany�
WWW	 http���www�informatik�uni�rostock�de��schlegel�

Section �� we discuss possible solutions and present our approach� Section � shows how extension
and constraining can be combined into the de�nition of a single class� and Section � concludes
the presentation with a summary�

� Introduction

Classes� group objects with common properties together� These commonalities can be found
either in the structure� called the type� or in the properties� called the state� of the objects� So� a
class has two aspects	 a type� describing the structure of its objects� and a condition� describing
the state of its objects� There are correspondingly two ways to derive new classes from existing
ones	

Extension de�nes a class with a subtype� i�e� a type with more properties�

Constraining yields a class with a stronger condition�

In both cases� objects of the new class are also objects of the base class and can be used as such�
this is called substitutability�

Example ���� Both extension and constraining are natural forms of class de�nitions	 Given
a class PERSON with attributes name and address� we can de�ne a class STUDENT by extending
PERSONs with a student ID number and a university� On the other hand� we can derive a class
NEW�YORKER from PERSON by constraining the attribute address to contain �New York�� �

Methods are operations de�ned in classes� they are the only way to manipulate objects� Update
methods may change the state of an object� and thus may leave the object in a state violating
the class condition� There are two possible approaches to this problem of constraining	

� Always maintain the class condition� so objects are kept consistent� Methods that may
leave an object inconsistent must be rede�ned�

� Move the object out of the class� this is called demigration�

Example ���� Suppose we have a method move�new�address� STRING� in class PERSON that
updates the attribute address according to its argument� In class NEW�YORKER� we now have the
choice	

� Rede�ne move so that its argument must contain �New York��

� Let move migrate an object out of class NEW�YORKER� it will still be in class PERSON�

�

Both approaches have drawbacks	

� Methods de�ned in the base class may have to be rede�ned in the derived class to respect the
stronger class condition� thus possibly becoming incompatible with their original de�nition
due to covariance� So� objects of the derived class are no longer substitutable for objects
of the base class�

�We assume basic familiarity with object�oriented concepts� e
g
 from �Mey��
 Most notions like class� type�
base class� derived class etc
 are de�ned formally in Section �

� Variables annotated with the derived class may refer to the object� Applying a method
may remove the object from the class� so the variable is then either ill�typed� or holding a
dangling reference� or must be set to a null value�

Example ���� If we have two variables annotated with types PERSON and NEW�YORKER� respec�
tively� that are referring to the same object� then applying the method call move��Washington��
to the �rst variable shows the problem	

If method move has been rede�ned in NEW�YORKER to not accept this argument� then NEW�YORKERs
are no longer PERSONs because they cannot be used as such� both variables are then not allowed
to refer to the same object� thus avoiding the problem�

If alternatively this application of move removes the object from NEW�YORKER� then the second
variable must no longer refer to it� for example by setting it to the null value void� To do so� we
have to know about all variables annotated with class NEW�YORKER that refer to this object� �

A database programming language has to o�er a solution to this problem� or to drop support
for class de�nition by constraining�

Generalising the problem

In typical OOPLs� methods cannot change the structure of objects� so there is no similar problem
with extension� Any method can be safely applied to an object without references becoming ill�
typed� However� OODBSs hold objects for longer periods of time and have to re�ect possible
type�changes�

Example ���� A person may become a student by enrolling on a university� and eventually
ceases to be a student when graduating� So� a method enrol should be applicable to objects
of class PERSON� migrating them into the class STUDENT� and likewise a migrator graduate for
STUDENTs to move them out again� If there is then any variable annotated with class STUDENT
referring to such an object� it is left ill�typed� �

The classes that an object can acquire or drop dynamically are called roles� and OODMs support�
ing this kind of type�change are called role models� They include special methods called migrators
�enrol and graduate in Example
��� to change the class and type of objects� It is clear that in
these models the demigration problem shows up even without constraining� The only di�erence
is that in role models migration is always performed explicitly while with constraining migration
can be implicit as a side�e�ect of some updates�

� Related work

To our knowledge� for constraining the problem was �rst presented in �ZM���� In this paper�
four properties of class hierarchies are shown to be incompatible	

Mutability Immutable objects may not change their state� this would disallow the method
move and therefore the implicit migration�

Substitutability Objects may not be attached to variables declared for superclasses� this would
disallow variables annotated with type PERSON to refer to NEW�YORKERs and avoid the
polymorphic application of move with inappropriate arguments to objects of that class�

Static type checking At run�time� we can decide whether the object attached to a variable
actually is a NEW�YORKER or not� and react accordingly to avoid type errors�

Subclassing by constraining This would disallow the de�nition of class NEW�YORKER by con�
straining the class PERSON�

According to �ZM���� one can only combine three of these properties into a single language�
However� we will show in Subsection ��� that these properties are su�ciently local to narrow this
restriction to single class hierarchies�

Cecil In the object�oriented programming language Cecil� so�called predicate classes �Cha���
are derived from base classes by constraining with a predicate� These classes have to satisfy some
properties	 predicate classes must not rede�ne common methods unless they are either ordered or
disjoint� and all predicate classes of a set of base classes must partition these base classes and have
the same set of methods� This ensures that objects in the base classes always have the same set of
methods and only one implementation for each method� but also disallows arbitrary constraining
and extension and is therefore not a general solution� The intended usage for predicate classes
is to model state�dependent methods of their base classes� Thus� the predicates each describe
a partition of the possible states in the base classes� �Cha��� provides a comparison of other
approaches that use disjointness and coverage� all of them using explicit declarations instead of
predicates and inference�

Ei�el The programming language Ei�el � �Mey�
� o�ers class conditions and constraining�
but no migration� thus the conditions are invariants� Derived classes may strengthen the class
invariants of their base classes and have to rede�ne methods that may leave objects in inconsistent
states� Objects of such classes are then no longer substitutable for objects of base classes� A set
of rules called CAT rules extends the type check to prevent substitutions� Again� this solution
leaves the programmer alone with the problem� Even worse� there is no syntactic di�erence
between a derived class whose objects are substitutable� and other subclasses� and the compiler
does not enforce the rede�nition of inherited methods when the invariant has been strengthened�

Fibonacci The database programming language Fibonacci �AGO�� o�ers migrators� but no
class conditions� Fibonacci allows objects to migrate into classes with a subtype� but not out
of classes� because of substitutability this is type�safe� so variables do not have to be rechecked�
Fibonacci can therefore use a static type check without compromising type�safety� On the other
hand� this solution does not help the programmer since it makes modelling the application domain
very hard�

DOOR	 BCOOL The database object model DOOR �WCL��� and the functional object
database language BCOOL �LS��� o�er migrators that allow objects to gain and loose types
freely� References that became ill�typed due to an object dropping a type are set to a null value�
However� this requires to check the whole database for such references and therefore does not
scale well�

LOOM The knowledge representation language LOOM �Bri��� o�ers class conditions� con�
straining� migration� mutability� and substitutability� it consequently drops static type checking�

Methods are not tightly bound to classes� rather� their applicability is de�ned by predicates
called situations� making them more �exible and deferring the class membership test to run�time�
LOOM is based on predicate logic� and the run�time system includes an inference mechanism
that makes the applicability check quite powerful� Here� the programmer has all means to model
the application domain closely� at the cost of possible run�time errors�

Role models Several role models have proposed solutions	

� In �GSR���� roles are themselves objects that are components of other objects� so applica�
tion domain objects are represented by hierarchies of implementation objects� Migration is
performed by manipulating the internal hierarchy of the object� The underlying language
Smalltalk �GR��� supports only automatic memory management� so role objects are kept
alive as long as there are references to them� The owning object may have dropped the
role �migrated out of a class� long before�

� �RS��� introduces role objects just as in �GSR��� and calls them aspects� however� aspects
may hide features of their base object and are therefore not substitutable for them� �RS���
proposes to disallow the deletion of aspects as long as there are references to them� without
discussing an implementation�

Database views Views in OODBSs provide a means to de�ne classes by constraining� How�
ever� most approaches �Mot��� do not address the demigration problem but concentrate on issues
like positioning of derived classes in the class and type hierarchy� combining constraining with
extension� and updatability of objects in derived classes� The latter ability will introduce the
demigration problem into views�

Unique references Still another alternative to control the e�ects of object migration are
unique references� In example
��� the alias problem has been shown to be one of the sources of
the problems of constraining� Avoiding aliasing is therefore one way to minimise the problems�
and unique references are the means to avoid aliasing �Hog���� A unique reference is de�ned as
a reference that is guaranteed to be unique� i�e� there is no other reference to the same object�
However� unique references disallow the sharing of objects� and their domain of use is therefore
restricted to hierarchic structures� Using unique references� we can keep the e�ects of demigration
local	 only the variable referencing the receiver of an update can become ill�typed� and this can
be handled by a local exception handler�

� De�nitions

We now de�ne an object model that supports constraining and migration�

��� Signatures� types and their hierarchies

Types are sets of operation signatures� where a signature consists of the method name� the
number and types of the arguments� and the result type�� We require the method name to be

�Abstract data types also include a set of axioms describing relationships among the signatures� these are not
relevant to type checking

unique within a type as a means of identi�cation� and we also require all signatures of a type to
contain the type at least once� The implementation of a type consists of a sort and a function for
each of its signatures� a sort is a set of attributes and its elements are tuples from the cartesian
product of the attributes� An element of the type is an element of the sort�

Types form a hierarchy	 if a type T supports at least the operations of a type U � it is called
a subtype of U �T �type U�� It depends on a corresponding hierarchy on signatures where
subsignatures of a signature s can safely handle argument lists intended for a call to s�

De
nition ��� �Signature hierarchy��

Let S � ns � s� � � � � � sk � sr and T � nt � t� � � � � � tl � tr be signatures�

S �sig T ��
ns � nt 	 k � l �a�

	 sr �type tr �b�
	
i�����k ti �type si �c�

Thus� the names and number of arguments must be equal �a�� the type of the the result may
vary with the hierarchy �b�� and the types of the arguments may vary against the hierarchy �c��
This relation on signatures is called contravariance �Cas��� �

The signature hierarchy allows types to not only add new operation signatures but also change
those they have in common with any supertype� Thus� the subtype relationship is de�ned as
follows	

De
nition ��� �Type hierarchy��

Let T � ftiji � Ig and U � fuj jj � Jg be types with signatures ti and uj� respectively� for some
�nite index sets I� J �

T �type U ��
uj�ti � ti �sig uj

where �sig already assumes T �type U � �

Note that a subtype may add new signatures arbitrarily� this is called type extension�

Variables are annotated with types� they may only refer to objects having that type� A variable
is called polymorphic if objects with di�erent types can be attached to it� The subtype hierarchy
allows to statically check attachments to polymorphic variables	 since elements of a subtype
support all operations of their supertypes� an attachment is type�safe if the type of the source
has a subtype of the type the target variable is annotated with�

��� Objects and classes

OODMs are built around the notion of objects	 an object is an immutable identity and has an
associated state� A class C consists of a domain dom�C� of possible objects� a type type�C�
describing the structure of their �local� state� and a condition cond�C�� the extent ext�C�
dom�C� of a class is the set of its existing objects� A class maps objects of its extent to elements
of its type� de�ning the local state of the objects�

cond�C� is a term of some predicate logic relating the results of method applications on the state
of an object of the class� An element of the type is a valid state for an object of the class if it
satis�es the condition�

Objects are manipulated by sending messages to them� Valid messages cause the implementation
associated to a matching signature to be executed� This run�time matching is called method

lookup or late binding� It allows the type of the �rst argument� the object� to vary with the type
hierarchy� thus in De�nition ���	

s� �type t�

without compromising type�safety with static type checks�

Method implementations may change the state of the object� conceptually� they associate a new
state with the object �that is� its identity�� So� a class divides the operations of its type into
selectors that leave the object unchanged� and modi�ers that may change the state� Modi�ers
that do not take the state of the object as an argument are called constructors because they can
be used to build the �rst state of the object after its creation with new� Migrators are special
modi�ers that move objects into and out of class extents� their result type is usually di�erent
from the type of the class� Modi�ers that are not migrators must have the type of their class as
result type� A class is considered a role class i� there are migrators for it�

Finally� we note that the changes caused by modi�ers are visible only via selectors	

De
nition ��� �Modi
er for a selector��

A modi�er m is called a modi�er for selector s

�� �object o� values vi� s�o� �� s�m�o� vi��

So� applying m to o causes a visible change in the state of o� �

��� Subclasses

Objects can be in �the extent of� many classes� the resulting subset hierarchy is called the class
hierarchy� Classes have to be placed into this hierarchy using a binary relation �class among
classes	

De
nition ��� �subclass��

Let A�Bi be some classes� If A �class Bi holds� then A is called a subclass of each Bi �Bi a
superclass of A�� and ext�A� dom�A� �

T
i ext�Bi�� Therefore� objects in ext�A� have both

type�A� and all type�Bi�� in general� the global type of an object is the union of the types of all
classes it is in� which is a subtype of the type of any such class� �

We require that no con�icts occur among the signatures in the union� con�icts among imple�
mentations are resolved according to the class hierarchy �see �Sch��b� for details�� For a class�
we call the union of the types of its superclasses its inherited type� Superclasses are often called
base classes in the context of class de�nitions�

Now we can de�ne some notions to talk about classes in hierarchies	

De
nition �� �direct subclass��

A class C is called a direct subclass of a class E if

C �class E 	 ��D � C �class D �class E

�

Migrators can move objects only into direct subclasses� The result type of migrators �in this
stricter sense� must be the type associated with the target class� while that of demigrators must

be the empty type� Also� demigrators of constrained and derived classes must not take arguments
besides the object that has to be demigrated because they have to be called implicitly�

After placing a new class into the class hierarchy with �class � we can de�ne its local type and
condition	

� Specifying a type results in type extension�

� Specifying a condition can make the class a constrained class�

Note that objects of a superclass are not automatically objects of a subclass� they have to
be migrated explicitly� Views in object�oriented databases �Mot��� and predicate classes in
Cecil �Cha��� de�ne classes where objects of superclasses migrate automatically if they meet the
condition� because of substitutability migration into a class is type�safe� We call a class derived
i� objects migrate into this class implicitly� A derived class is always de�ned by a query and
therefore a constrained class�

We now have to de�ne when a class is considered a constrained class� First� we allow the condition
of a class to contain signatures of the types of its superclasses� This can be used to either restrict
the corresponding state� or to relate the new local state to that de�ned in superclasses� these
conditions involving selectors of the new type are not considered constraining�

De
nition ��� �constrained class��

Let closureC�t� denote the transitive closure of a term t with respect to type�C�� i�e� t enriched
with all transitive comparisons� that involve signatures from type�C�� and ��S��t� the projection
of t on signatures in S� i�e� t with all minimal subterms removed that contained a signature not
in S� We call a class E constrained i� its condition is strictly stronger on its inherited type than
the condition of a superclass C	

E constrained �� �C�D� E �class D �class C

	 ��type�C���closureC�cond�D��
�� ��type�C���closureC�cond�E���

We call E directly constrained from D i� this class D is a direct superclass of E� �

Applying an update method to an object of a constrained class can leave the object in a state
violating the class� condition� it must consequently demigrate from that class and all its sub�
classes� It is therefore su�cient to check only the conditions of directly constrained classes� in
order to �nd out from which classes an object may have to demigrate�

��� Classes as types

Classes can be used as types in most OOPLs� This has two aspects	

�� Variables annotated with a class may only refer to objects in the extent of the class� In
databases� this is called referential integrity� in programming languages� variables bound
to objects not in their class are called dangling references�

�Note that we need information which user�de�ned signatures denote transitive relations
 For ADTs� transi�
tivity can be expressed in the axioms

� Messages sent to the object attached to a variable are executed against the state of the
object�� So� the state of objects attached to variables annotated with a class must be of a
subtype of the type of that class�

Since subclasses are subsets and have �global� subtypes �both in the non�strict sense�� it is
type�safe to bind objects of a class to any variable annotated with a superclass� this is called
substitutability�

� The running example

Here is the introductory example with all the concepts introduced so far	

Example �� �Class PERSON��
The following class� models Persons	

class PERSON

creation birth� �� allow make as constructor

feature �NONE�

STRING name� address� �� the sort

feature

birth�a�name� an�address	STRING
 �� constructor

get�name	STRING �� first selector

get�address	STRING �� second selector

move�new�address	STRING
 �� modifier

end

name and address are private features of the class� thus de�ning the sort of its type� all the
others are public and constitute type�PERSON�	

f birth � STRING� STRING� PERSON

get�name � PERSON� STRING�

get�address � PERSON� STRING�

move � PERSON� STRING� PERSON g

The �rst signature birth is a constructor� the second and third get�name and get�address are
selectors� and the last move is a modi�er� �

From this base class� we can de�ne the subclass STUDENT by type extension	

Example �� �Class STUDENT��

class STUDENT inherit PERSON

creation enrol

feature

student�id	INTEGER

enrol�a�person	PERSON

end

�except for copying and assignment� of course

�We use an Ei�el ��like notation

The inherit clause de�nes STUDENT �class PERSON� and type�STUDENT� is

f enrol � PERSON� STUDENT

student�id � STUDENT� INTEGER g

The method student�id is a selector� and the modi�er enrol should be a migrator� Thanks to
ext�STUDENT� ext�PERSON�� students also have a name and an address� in OOPLs� this is called
inheritance� �

In Ei�el �� the method enrol does not migrate its receiver into class STUDENT� instead the
receiver object remains unchanged� and the method result is a new object� In our model� enrol
is a migrator that inserts the receiver into ext�STUDENT� and initialises the attribute student�id
appropriately� Ei�el has no syntax for demigrators �or destructors� as they are called in e�g�
C�� �ES�
��� so we cannot de�ne graduate� it would have the signature

graduate � STUDENT� �

indicating that the properties of STUDENTS are lost for an object after its demigration� Unlike
C�� destructors� a demigrator does not delete its argument object but instead moves it out of
a class extent� if it is still in other classes� it will survive the operation�

The class NEW�YORKER is an example for a constrained class	 it should hold all objects of class
PERSON with an address containing �New York�� The following class de�nition tries to capture
this constraint	

Example �� �Class NEW�YORKER��

class NEW�YORKER inherit PERSON

invariant get�address�contains��New York�

end

The type associated with class NEW�YORKER is the empty set since it does not de�ne new features�
We will examine the combination of constraining with extension in Section �� �

However� as the Ei�el � keyword invariant implies� no object of this class may move out of New
York� The modi�er move as inherited from �the type of� class PERSON may not be called with
arguments that violate the invariant� rather than migrating the object out of class NEW�YORKER�
This restriction is implicit in Ei�el � and only checked when assertion checking is enabled�

In some OODBSs� we can de�ne a view DB�NEW�YORKER	

Example �� �View DB�NEW�YORKER��

Using the query language OQL of the ODMG database standard �CBB����� we can select all
persons that have an address containing �New York�	

define DB�NEW�YORKER as

select p from Person p

where p�address like �New York�

This assumes the name of the extent of class PERSON to be Person� and attaches the name
DB�NEW�YORKER the query� �

However� in the ODMG standard� this de�nes only a set of objects of class PERSON� rather than
a new derived class� The reason is the data model of the standard which was developed by
combining the data models of three OOPLs� so the standard model inherits their restrictions	
classes only de�ne the structure of objects� but are not sets of objects� Constraining is therefore
unsupported in this model�

� Solutions

In Section
 �Example
���� we have seen that constraining is dangerous because an update may
require demigration of an object� and most current OOPLs are lacking support for migration�
It follows that adding support for object migration allows for constraining� However� the new
problem is not easier to solve than the old one� So� before discussing object migration in general
in Subsection ��
� we o�er a solution for constraining only�

��� Constraining reconsidered

To avoid the problem of constraining� �MD��� proposes to disallow the de�nition of subclasses in
this way altogether� in favour of mutability� substitutability and static type checking� However�
this decision is not appropriate for many application domains� For example� in mathematics all
objects are immutable and constraining is common� so we would rather drop mutability� In fact�
�MD��� is too pessimistic	 all four properties can be combined into a single language� although
not in a single class de�nition�

Mutability and constraining are mutually exclusive� if we want to retain static type checking and
substitutability� However� based on De�nition ��� we can push the choice between constraining
and mutability into the class de�nition	

Lemma ���� A modi�er for a selector s is a migrator for any constrained subclass with an
invariant involving s� Therefore� we have the choice	

� If there is a modi�er m for selector s� we disallow the de�nition of constrained subclasses
with invariants involving s since in any such subclass m would be a migrator�

� If a class is constrained by an invariant involving selector s� we disallow the de�nition of
modi�ers for s for the same reasons�

So� a class is either mutable or constrained with respect to selector s� �

This policy avoids implicit object migration caused by updates� and makes constraining prac�
ticable without excluding mutability� substitutability and static type checking from the whole
language� However� it still disallows many class de�nitions where constraining would be natural�

Example ���� Class PERSON is mutable with respect to selector get�address because of the
modi�er move� Therefore� we are not allowed to de�ne the class NEW�YORKER� This requires the
programmer to manually make sure that PERSONs are really NEW�YORKERs where they should
be� �

��� Managing object migration

While avoiding migration as described in Subsection ��� looks like a solution� it is generally
preferable to handle it because of the bene�ts in modelling power� There are several proposals
for role models but none handles the demigration problem satisfactorily �see Section ��� We
found two ways to cope with demigration	

�� disallow the annotation of variables with constrained classes� so no variable can become
ill�typed because of a demigration� or

� modify ill�typed variables after a demigration� by taking advantage of a mechanism for
general relationships�

The �rst solution is very limiting� but can be made practical with suitable support� this is
discussed in Subsection ��
��� The second one o�ers a general solution� but adds some overhead�
we present its details in Subsection ��
�
�

����� No variables of constrained classes

The demigration of an object from a class will leave variables annotated with that class that
reference this object ill�typed� If there are no variables annotated with a constrained class� they
trivially cannot become ill�typed� This is the approach taken by most object�oriented database
systems	 even though they support selection views� they do not regard them as classes� and
consequently one cannot annotate variables with them�

However� even if we accept these sets of objects as classes� this solution makes constrained classes
less useful because there is no way to access their local features� A dynamic type check facility
can help here	

Type guards like in Oberon �WR�
� can help to simulate local variables of constrained classes�
because they provide a dynamic type test� A type guard controls a block by narrowing the type
of a variable in that block	 if the object bound to the variable does not conform to the type� the
block is skipped� So� if the block is executed� it can safely assume that the object bound to that
variable has the required type� which can be that of a constrained class� However� the object may
not migrate out of that class within the scope of the block� so updates are not possible� except
for the very last statement in the block� Due to late binding� it is hard to predict which update
methods can safely be used� and due to aliases� even method applications to objects attached to
other variables might really e�ect the object in question� Thus� the controlled block may only
contain calls to selectors� plus an optional last call to a modi�er on the constrained variable�

Example ���� In Example
��� no variable may be annotated with class NEW�YORKER� If we
want to access parts speci�c to NEW�YORKERs� for example the club they visit� we have to use a
type guard	

local p	 PERSON

with �p is NEW�YORKER

do

�� p has type NEW�YORKER in this block

System�out�println�p�club

end

�

Note that this restriction is not necessary for role classes that are not constrained because with
them demigration is explicit� If you do not call a demigrator� directly or indirectly� then you can
annotate local variables with role classes� Since it is possible to determine statically whether a
relevant demigrator is in the closure of called methods� we can apply a static check� Because of
late binding� we have to consider all implementations of methods in all subclasses when building
the closure�

����� Using a relationship mechanism

After a demigration� some variables may be left ill�typed� To avoid type errors due to such
dangling references� it is necessary to either redirect them� or set them to a null value� However�
this amounts to browsing the whole set of objects of the current program �or even worse� the
database� in case of a database programming language� for such references� plus local variables
in methods up the call chain� This is clearly undesirable� and should be avoided�

Fortunately� some object�oriented database models o�er a relationship mechanism that helps
managing this task� Relationships describe relations between objects that are navigable in all
directions� thus allowing to �nd any object holding a reference to a given one� Several relationship
mechanisms have been proposed in the literature �Rum��� DG��� AGO��� including one for the
OODB standard ODMG
�� �CBB����� we use the one presented in �Sch��a��

De
nition ��� �Relationship��

A relationship R consists of a relation schema� a condition� and an exception policy� The relation
schema is a set of attributes� some of them of class types �references�� Like a class� a relationship
has an extent ext�R� which is a relation over the given schema� Each tuple in the relation
describes a link between the objects in the object�valued attributes� The condition describes
valid tuples� with the special case of cardinality constraints that restrict the number of tuples�
The exception policy speci�es the behaviour in case of integrity violations� possible reactions are
removal of the o�ending tuples or abort of the transaction� �

The relationship mechanism introduced here is presented in more detail in �Sch��a�� a persistence
speci�cation based on it is presented in �Sch��c��

Object�oriented systems prefer an object�centred view on the world� and relationships follow this
preference by o�ering a per�object view on their extent� All objects referenced from an attribute
of a relation form a derived class �de�ned by selection�� in this class� we can de�ne methods
to select the objects related to a given one� thus giving the illusion of a simple reference� Such
methods can be de�ned for any class of objects referenced from attributes of the relation� allowing
navigation in all directions� It is therefore possible to �nd all links that an object participates
in� by simply selecting tuples from relations� These relations are generally much smaller than
the set of all objects�

Relationships also allow to react �exibly on integrity violations like the dangling reference prob�
lem shown in Section
� Both properties together make implicit migrations harmless	 Suppose
an object participating in a relationship migrates out of the class that the relationship assumes�
This constitutes an integrity violation� and the exception policy of the relationship is checked	

� The standard behaviour is to remove all referencing tuples� This is equivalent to setting
referencing variables to a null value� and thus avoids type errors�

� If this is inappropriate� we can take advantage of database semantics and specify to abort
the transaction� This rolls back the change that caused the demigration� and is suitable
whenever the object must be in that class as long as the link exists�

The suitable policy depends on the application domain	

Example ���� Consider a library in New York and its customers� The library may not want
customers to move away if they still have books� so it speci�es the relationship BORROWED�BOOKS

with attributes the�book� BOOK and the�customer� NEW�YORKER and chooses the abort pol�
icy� Each tuple in the extent of BORROWED�BOOKS describes who has borrowed which book� If a
customer tries to move away from New York and still has a book from the library� the demigra�
tion will cause an integrity violation check on BORROWED�BOOKS and consequently an abort of the
transaction	 the customer must not leave New York with the book�

On the other hand� the New York clubs mentioned in Subsection ��
�� will have to let members
leave them and therefore choose the removal policy for their relationship MEMBERSHIP� If a member
migrates out of class NEW�YORKER� the integrity check will remove the tuple with the dangling
reference� So� the object will simply cease to be a club member� �

Relationships are powerful but introduce some overhead� If the tuples are really stored in a
relation� then updates are simple but navigational access may be slower� If the tuples are stored
distributed in instance variables in the related objects� then updates require consistent changes
in all objects �The�� but navigational access is fast�

����� The Perfect Mix

The second solution is powerful enough to cover all aspects of demigration� but using relationships
adds some overhead� so we combine both solutions	 For inter�object references� relationships must
be used� while we avoid their use for simple local variables in methods� For these� constrained
classes still cannot be used as types� this is no improvement over existing programming languages�

As a result� we are able to support demigration� whether implicit or explicit� allowing both
constrained classes as well as general roles� There is no restriction on the use of these concepts
in the data model� and only local variables in methods are restricted to non�constrained classes�

We note that inter�object references are su�cient if they are annotated with non�constrained
classes� so demanding relationships for all links between objects is a bit of an overdose� However�
relationships have a number of other advantages over references �see �Sch��a� Rum��� AGO���
for details�� and using only one concept in the data model avoids confusion� Also� modern object�
oriented analysis and design models like OMT �RBE���� and UML �HW��� model links between
objects exclusively with relationships�

� Combining extension and constraining

De�ning classes by constraining is uninteresting if these classes cannot have additional local state
or methods� It is therefore necessary to check how extension and constraining can be combined�
Classes can be extended in three ways	

� local state to hold additional information

� new methods to manipulate the new state� or to o�er functionality that only applies to
objects of the constrained class

� new implementations for inherited methods� typically in the form of additional actions

We will now examine each of these ways�

	�� Extension by local state

Adding local state in a constrained class is possible� but the corresponding selectors can only be
accessed if the object is known to be in the class de�ning them �or a subclass�� This is discussed
in the next Subsection ��
� The state itself� i�e� the element of the sort and its attributes� is
directly accessible only in implementations of methods of the class�

Each object of a class is mapped to its local state� as speci�ed by the modi�er of this class that
was last applied to the object� It follows that constructors and migrators of a class determine
the �rst local state� this is called initialisation�

Because objects migrate implicitly into derived classes� there is no way to initialise local state
in these classes by arguments� The modi�er that caused the migration cannot initialise them
because it is de�ned in a superclass� It follows that the derived class must have a parameter�less
constructor� the initial state can thus only be derived from the current state of the object �and
related objects�� There is no similar requirement for constrained or role classes�

Example ���� In the derived class DB�NEW�YORKER from Example ��� we can de�ne a new
attribute since�when�in�town to record the arrival date� and a selector years�in�town to
calculate how long someone resides in New York� The migrator will then need to initialise
since�when�in�town to the current date� when an object migrates into the derived class due to
a call to the modi�er move� �

	�� Extension by methods and implementations

For new methods� there is no initialisation problem because implementations depend on classes�
not on individual objects� But due to static type checking� a method can only be applied to
objects that are known to be in a class with a type that contains this method� Variables are
annotated with types so that only objects with conforming types can be attached to them� Since
we disallow the annotation of variables with constrained classes� selectors of these classes can only
be accessed via relationship links� inside the scope of a type guard� or� thanks to late binding�
in other methods of these classes�

Example ���� To access the selector years�in�town introduced in Example ���� we either need
a link from another object� e�g� from a club via the relationship MEMBERSHIP �see Example ����� or
a type guard similar to that in Example ��
� In the implementation of years�in�town� we could
access any method de�ned �or inherited� in class DB�NEW�YORKER without such hassle because
late binding will execute this implementation only for objects in that class� �

Adding implementations for inherited methods can be done in two ways� depending on the
language support	

conventional languages� rede�ne inherited methods

event�based languages� associate additional actions to events

Both approaches are described in the following subsections�

����� Rede
niting methods

Conventional OOPLs map method calls to function executions� and let subclasses rede�ne this
mapping� This is achieved by supplying an implementation for an inherited method� Due to
late binding� such an implementation will completely replace the one in superclasses� As a
consequence� it is not possible to simply add an action� the new implementation has to explicitly
call the inherited implementation to achieve that e�ect� This approach is more �exible than the
event�based one� but introduces problems with late binding�

Late binding will execute the implementation of the most speci�c class an object belongs to� Now�
we allow objects to be in several classes simultaneously� and there is often not a unique highest
lower bound for any set of classes that an object belongs to� and even if there is� the object does
not necessarily belong to that class� �Sch��b� presents an algorithm that adds con�ict resolution
classes to a given class hierarchy to make late binding unambiguous even in the presence of role
classes�

All role models have this method lookup problem if they support late binding� However� con�
strained classes make the situation even worse	 the relative position of constrained classes in the
class hierarchy is undecidable in general �HS��a� HS��b� because of the constraining predicates�
so we have to assume that constrained classes with the same base classes are incomparable sib�
lings� We can provide means to place them explicitly in the class hierarchy so the programmer
can decide� Once the hierarchy is unambiguous� we can apply the con�ict resolution algorithm
presented in �Sch��b��

Example ���� If we have derived classes DB�NEW�YORKER and DB�BOSTONER as de�ned in Exam�
ple ��� we can declare them to be disjoint� The con�ict resolution then does not have to solve
con�icts between implementations in these classes�

Now assume a derived class LIBRARY�CUSTOMER that we can de�ne by projecting the relationship
BORROWED�BOOK from Example ��� on its attribute the�customer� We can infer that it is a
subclass of DB�NEW�YORKER� so there is also no method lookup con�ict possible�

If� on the other hand� we de�ne the class of CLUB�MEMBERs by projecting the relationship
MEMBERSHIP from Example ��� accordingly� it is not clear whether it is a subclass of the class
LIBRARY�CUSTOMER or not� or vice versa� If there are implementations for the same method� we
have to either order them� or introduce a subclass for their intersection� as described in detail in
�Sch��b�� �

����� The event�based approach

OOPLs based on events are able to associate several actions in di�erent classes with an event� If
an event happens� all associated actions are preformed in parallel� If the event is equivalent to
a selector� all results have to be combined into a net result by means of an aggregation function
�see �GSR��� HSJ���� for examples of such languages�� In constrained classes� you can associate
an action with an event that is already handled by superclasses� since events are very similar to
method calls� this action can be seen as an extension of the implementation of event�

Example ���� If we assume that our model is event�based� we can add an action to the
method�event move in class STUDENT to let the university know about the new address�

class STUDENT inherit PERSON

�� all the features as in Example ���

feature

get�university	UNIVERSITY �� queries a relationship

move�new�address	STRING

is also �� invented syntax

get�university�notify�new�address

end

end

If modi�er move is applied to an object of class STUDENT� both actions from classes PERSON and
STUDENT will be executed� causing the change of address and noti�cation of the university about
it� �

This approach is simple and safe but limited to pure additions of actions� There is no way to
modify actions de�ned in superclasses� or to optimize them by replacing them with algorithms
that can take advantage of properties of the subclass� Also� the aggregation of partial results may
not be suitable to calculate the net result� but there is no way to process intermediate results
by di�erent aggregation functions� On the other hand� this approach is well suited to support
constrained classes because it does not require the classes to be explicitly placed in the class
hierarchy�

	 Conclusion

Subclassing by constraining is an important modelling concept that lacks support in current
OODMs� Besides giving guidelines how to use constraining safely in OOPL data models� we
have shown that role support is su�cient to allow unrestricted constraining� role models are a
well accepted concept in OODMs� so we can concentrate on them� Our solution is based on
another accepted concept� namely relationships� Using relationship links instead of references
helps to �nd ill�typed variables e�ciently and handle invalid links �exibly� Finally� we have
shown that constraining and extension can be safely combined under acceptable restrictions�

References

�AGO��� Antonio Albano� Giorgio Ghelli� and Renzo Orsini� A relationship mechanism for a
strongly typed object�oriented database programming language� In Proceedings of the
��th International Conference on Very Large Data Bases� pages ���� September
�����

�AGO�� Antonio Albano� Giorgio Ghelli� and Renzo Orsini� Fibonacci	 A programming lan�
guage for object databases� The VLDB Journal� ����	�������� July ����

�Bri��� David Bril� LOOM Reference Manual Version
��� Technical report� University of
Southern California� December �����

�Cas�� Giuseppe Castagna� Covariance and contravariance	 Con�ict without a cause� ACM
Transactions on Programming Languages and Systems� �����	�������� May ����

�CBB���� R�G�G� Cattell� Douglas Barry� Dirk Bartels� Mark Berler� Je� Eastman� Sophie
Gamerman� David Jordan� Adam Springer� Henry Strickland� and Drew Wade� ed�
itors� The Object Database Standard� ODMG ���� Morgan Kaufmann� San Mateo�
CA� �����

�Cha��� Craig Chambers� Predicate Classes� In Oscar Nierstrasz� editor� Proceedings of the
ECOOP 	
� European Conference on Object�oriented Programming� number ��� in
Lecture Notes in Computer Science� pages
���
��� Kaiserslautern� Germany� July
����� Springer Verlag�

�DG��� Oscar Diaz and P� M� D� Gray� Semantic�rich User�de�ned Relationships as a Main
Constructor in Object Oriented Databases� In Conf� on Object�Oriented Databases�
Windermere� July �����

�ES�
� Margaret A� Ellis and Bjarne Stroustrup� The Annotated C Reference Manual�
Addison�Wesley� Reading� ���
�

�FJLS��� Burkhard Freitag� Cli� B� Jones� Christian Lengauer� and Hans�J�rg Schek� editors�
Object�Orientation with Parallelism and Persistence� Kluwer Academic Publishers�
����� ISBN ����
���������

�GR��� Adele Goldberg and David Robson� Smalltalk���� The Language and its Implemen�
tation� Addison�Wesley� Reading� MA� �����

�GSR��� Georg Gottlob� Michael Schre�� and Brigitte R�ck� Extending object�oriented systems
with roles� ACM Transactions on Information Systems� �����	
���
��� July �����

�Hog��� John Hogg� Islands	 Aliasing Protection in Object�Oriented Languages� In Pro�
ceedings of the OOPSLA 	
� Conference on Object�oriented Programming Systems�
Languages and Applications� pages
���
�� November ����� Published as ACM
SIGPLAN Notices� volume
�� number ���

�HS��a� Andreas Heuer and Peter Sander� Classifying object�oriented query results in a
class�type lattice� In Proceedings of the �rd Symposium on Mathematical Fundamen�
tals of Database and Knowledge Base Systems� Rostock� MFDBS
�� volume �� of
Lecture Notes in Computer Science� pages ���
�� Berlin� May ����� Springer�Verlag�

�HS��b� Andreas Heuer and Marc H� Scholl� Principles of object�oriented query languages�
In Hans�J�rgen Appelrath� editor� Proceedings GI�Fachtagung �Datenbanksysteme
f�r B�ro� Technik und Wissenschaft�� Kaiserslautern� volume
�� of Informatik�
Fachberichte� pages �������� Berlin� ����� Springer�Verlag�

�HSJ���� Torsten Hartmann� Gunter Saake� Ralf Jungclaus� Peter Hartel� and Jan Kusch�
Revised Version of the Modelling Language Troll �Version
���� Informatik�Bericht
������ Technische Universit�t Braunschweig� �����

�HW��� Paul Harmon and Mark Watson� Understanding UML� the developer	s guide� Morgan
Kaufmann Publishers� Los Altos� CA ���

� USA� November �����

�LS��� Christian Laasch and Marc H� Scholl� A functional object database language� In
Catriel Beeri� Atsushi Ohori� and Dennis E� Shasha� editors� Proceedings of the �th
International Workshop on Database Programming Languages� Workshops in Com�
puting� pages ������� Springer Verlag� August �����

�MD��� Nelson Mattos and Linda G� DeMichiel� Recent design trade�o�s in SQL�� SIG�
MOD Record �ACM Special Interest Group on Management of Data��
����	������
December �����

�Mey�
� Bertrand Meyer� Ei�el� The Language� Object�Oriented Series� Prentice Hall� New
York� N�Y�� ���
�

�Mey��� Bertrand Meyer� Object�Oriented Software Construction� Prentice Hall� Englewood
Cli�s� NJ ����
� USA� second edition� �����

�Mot��� Renate Motschnig�Pitrik� Requirements and Comparison of View Mechanisms for
Object�Oriented Databases� Information Systems�
����	

��

� �����

�RBE���� James E� Rumbaugh� Micheal R� Blaha� F� Eddy� William E� Lorensen� and William J�
Premerlani� Object�Oriented Modeling and Design� Prentice Hall� Englewood Cli�s�
NJ� �����

�RS��� Joel Richardson and Peter Schwarz� Aspects	 Extending Objects to Support Multiple�
Independent Roles� In ACM SIGMOD Record� pages
������� May �����

�Rum��� James E� Rumbaugh� Relations as Semantic Constructs in an Object�Oriented Lan�
guage� In Proceedings of the ACM Conference on Object�Oriented Programming� Sys�
tems� Languages and Applications �OOPSLA�� pages �������� �����

�Sch��a� J�rgen Schlegelmilch� An Advanced Relationship Mechanism for Object�Oriented
Databases� Technical Report �������� University of Rostock� Computer Science
Dept�� �����

�Sch��b� J�rgen Schlegelmilch� Con�ict Resolution using Derived Classes� In Dilip Patel� Yuan
Sun� and Shushma Patel� editors� Proceedings of the �rd International Conference on
Object�Oriented Information Systems �OOIS	
��� London� UK� pages
���
��� Berlin�
December ����� Springer Verlag�

�Sch��c� J�rgen Schlegelmilch� Role�based Persistence� In Burkhard Freitag� Cli�ord B� Jones�
Christian Lengauer� and Hans�J�rg Schek� editors� �FJLS
��� pages ������ Kluwer
Academic Publishers� �����

�The�� Sven Thelemann� Assertion of Consistency Within a Complex Object Database Using
a Relationship Construct� In Micheal P� Papazoglou� editor� Proceedings of the ��th
International Conference on Object�Oriented and Entity�Relationship Modeling� Gold
Coast� Australia� volume ��
� of Lecture Notes in Computer Science� pages �
����
Berlin� December ���� Springer Verlag�

�WCL��� Raymond K� Wong� H� Lewis Chau� and Frederick H� Lochovsky� DOOR	 A Dynamic
Oject�Oriented Data Model with Roles� Technical Report HKUST�CS����
� The
Hong Kong University of Science and Technology� Department of Computer Science�
Clear Water Bay� Kowloon� Hong Kong� �����

�WR�
� Niklaus Wirth and Martin Reiser� Programming in Oberon � Steps Beyond Pascal and
Modula� Addison�Wesley� �rst edition� ���
� source code from the book is available
at	 ftp	��ftp�inf�ethz�ch�pub�software�Oberon�Books�PinOberon��

�ZM��� Stanley B� Zdonik and David Maier� editors� Readings in Object�Oriented Database
Systems� Morgan Kaufmann Publishers� San Mateo� CA� �����

