Typesafe Dynamic Classification

Jiirgen Schlegelmilch

University of Rostock, Computer Science Department, Database Research Group,
D-18051 Rostock, Germany
schlegel@informatik.uni-rostock.de, WWW:
http://wwwdb.informatik.uni-rostock.de/"schlegel/

Abstract. Object-oriented systems rely on classification of objects as
a basic principle. This classification can depend on the type of the ob-
ject, or its state. Many systems, including almost all object-oriented pro-
gramming languages, only support classification by type, making classes
independent of state changes. Many application domains, however, use
taxonomies based on classification by state. Views in database systems
can achieve this kind of classification but object-oriented database sys-
tems do not accept these views as classes.

The problem with classification by state is the need to reclassify objects
after updates, and to maintain the type-safety in the presence of ref-
erences to reclassified objects: if an object drops out of a class that a
reference to it expects, then the reference is left ill-typed. Role models
which allow explicit reclassification face the same problem.

For SQL3, classification by state was considered but dropped in favour of
mutability, substitutability, and static type checking; all four properties
were considered incompatible but are not completely. Our proposal to
handle the reclassification problem uses a powerful relationship mech-
anism instead of simple references. Relationships are multi-directional,
thus allowing to find objects related to the reclassified one. We then either
remove the link between the objects, or roll back the change that caused
the reclassification. We also present an approach with less overhead that
employs dynamic type checking. While the first approach allows to use
views and role classes in the application schema, the second handles them
for local variables in methods. We therefore combine both, which per-
mits us to use view and role classes almost arbitrarily. This enables the
important use of views in the schema to help maintaining consistency,
as known from relational database systems.

Finally, we discuss the combination of classification by properties, known
as subclassing by constraining, and classification by type.

1 Overview

Object-oriented data models (OODMs) describe the application domain using
objects, and group these objects into classes. These classes are placed into a
class hierarchy to enable polymorphism. From already defined classes, we can
derive subclasses in two ways: either by adding new properties (extension), or by
placing constraints on existing properties. While extension is offered by almost

all object-oriented programming languages (OOPLs), constraining is considered
not type-safe and is therefore unsupported.

Object-oriented database systems (OODBSs), on the other hand, offer con-
straining in the form of selection queries: a set of objects can be defined by
selecting those objects of a larger set that meet some constraint. However, cur-
rent databases do not regard such query results as classes.

The main problem in both OOPLs and OODBSs is the need to reclassify an
object after updates to properties constrained by the class definition. If there is
a reference to that object that assumes membership in a class that the object
just dropped, the reference is ill-typed.

Some database programming languages offer roles that objects can gain or
drop dynamically. These can simulate reclassification, but face the same problem,
namely handling references to dropped roles.

We show how a relationship mechanism together with dynamic typechecks
can be used to avoid invalid references, thus enabling constraining as well as view
classes and roles, without compromising type-safety. First, we give an informal
introduction in Sect. 2 and review existing solutions in Sect. 3. Then we provide
the necessary definitions in Sect. 4. In Sect. 5, we discuss two possible solutions
and present our approach as a combination. Section 6 shows how extension and
constraining can be combined in the definition of a single class, and Sect. 7
concludes the presentation with a summary.

2 Introduction

Classes! group objects with common properties together. These commonalities
can be found either in structure and behaviour, called the type, or in the prop-
erties, called the state, of the objects. So, a class has two aspects: a type spec-
ification and a condition on the state of its objects. There are correspondingly
two ways to derive new classes from existing ones:

Extension defines a class with a subtype, i.e. a type with more properties.
Constraining yields a class with a stronger condition.

In both cases, objects of the new class are substitutable for objects of the base
class.

Ezxample 1. Both extension and constraining are natural forms of class defini-
tions: Given a class PERSON with attributes name and address, we can define
a class STUDENT by extending PERSONs with a student ID number and a uni-
versity. On the other hand, we can derive a class NEW_YORKER from PERSON by
constraining the attribute address to contain ’New York’. |

Similarly, classes could be defined as queries, selecting all objects of super-
classes whose state meet certain criteria. The type of such a class is the union

! We assume basic familiarity with object-oriented concepts, e.g. from [26]. Most no-
tions like class, type, subclass, derived class etc. are defined formally in Sect. 4.

of the types of the superclasses, while the condition is the conjunction of the
query with the conditions of the superclasses. This makes classification auto-
matic, without the need to explicitly reclassify objects after state changes, and
helps keeping the database consistent.

Methods are operations defined in classes; they are the only way to manipu-
late objects. Update methods may change the state of an object, and thus leave
it in a state violating the class condition. It must consequently drop membership
in that class.?

There are two possible approaches to the problem of constraining;:

1. Always maintain the class condition, so objects are kept consistent, thus
avoiding reclassification. Methods that may leave an object inconsistent must
be redefined.

2. Move the object out of the class; this is called demigration.

Ezample 2. Suppose we have a method move(new_address: STRING) in class
PERSON that updates the attribute address according to its argument. In class
NEW_YORKER, we now have the choice:

1. Redefine move so that its argument must contain ’New York’.
2. Let move migrate an object out of class NEW_YORKER; it will still be in class
PERSON.
O

Both approaches have drawbacks:

1. Methods defined in the base class may have to be redefined in the derived
class to respect the stronger class condition, thus possibly becoming incom-
patible with their original definition due to covariance. So, objects of the
derived class may no longer be substitutable for objects of the base class.

2. Variables annotated with the derived class may refer to the object. Applying
a method may remove the object from the class, so the variable is then either
ill-typed, or holding a dangling reference, or must be set to a null value.

Example 3. With two variables of type PERSON and NEW_YORKER, resp., referring
to the same object, the method call move (’Washington’) to the first variable
shows the problem:

If method move has been redefined in NEW_YORKER to not accept this argu-
ment, then NEW_YORKERs are no longer PERSONs because they cannot be used
as such; both variables are then not allowed to refer to the same object, thus
avoiding the problem.

If alternatively this application of move removes the object from NEW_YORKER,
then the second variable must no longer refer to it, for example by setting it to
the null value void. To do so, we have to know about all variables annotated
with class NEW_YORKER that refer to this object. O

2 In typical OOPLs, methods cannot change the type of objects, so there is no similar
problem with extension. Any method can be safely applied to an object without
references becoming ill-typed.

A database programming language has to offer a solution to this problem, or
must not support class definition by constraining or views.

Widening the scope

OODBSs hold objects for longer periods of time and have to reflect possible
type-changes. Some database programming languages therefore offer means to
explicitly change the type of an object; this is called migration.

Example 4. A person may become a student by enrolling on a university, and
eventually ceases to be a student when graduating. So, a method enrol should
be applicable to objects of class PERSON, migrating them into the class STUDENT,
and likewise a migrator graduate for STUDENTSs to move them out again. If there
is then any variable annotated with class STUDENT referring to such an object,
it is left ill-typed. |

The classes that an object can acquire or drop dynamically are called roles, and
OODMs supporting this kind of type-change are called role models. They include
special methods called migrators (enrol and graduate in Example 4) to change
the class and type of objects. It is clear that in these models the demigration
problem shows up even without constraining. The only difference is that in
role models migration is always performed explicitly while with constraining
migration is implicit as a side-effect of some updates.

3 Related work

To our knowledge, for constraining the problem was first presented in [26, p. 15].
In this article, four properties of class hierarchies are shown to be incompatible,
and dropping one of them is sufficient:

Mutability Immutable objects cannot change their state; this would disallow
the method move and therefore the implicit migration.

Substitutability Objects cannot be attached to variables declared for super-
classes; this would disallow variables annotated with type PERSON to refer to
NEW_YORKERs and avoid the polymorphic application of move with inappro-
priate arguments to that objects.

Static type checking At run-time, we can decide whether the object attached
to a variable actually is a NEW_YORKER or not, and react accordingly to avoid
type errors.

Subclassing by constraining This would disallow the definition of class NEW_-
YORKER by constraining the class PERSON.

According to [26, 16], one can only combine three of these properties into a
single language. However, we will show in Subsection 5.1 that these properties
are sufficiently local to narrow this restriction to single class hierarchies.

Cecil In the object-oriented programming language Cecil, so-called predicate
classes [7] are derived from base classes by constraining with a predicate. These
predicate classes are quite limited: they must not redefine common methods
unless they are either ordered or disjoint, and all predicate classes of a set of
base classes must partition these base classes and have the same type. This
ensures that objects are in exactly one predicate class and always have the same
type and only one implementation for each method. However, it also disallows
arbitrary constraining and extension and is therefore not a general solution.
The intended usage for predicate classes is to model state-dependent methods of
their base classes. Thus, the predicates each describe a partition of the possible
states in the base classes. [7] provides a comparison of other approaches that
use disjointness and coverage, all of them using explicit declarations instead of
predicates and inference.

Eiffel The programming language Eiffel 3 [17] offers class conditions and con-
straining, but no migration; thus the conditions are invariants. Derived classes
may strengthen the class invariants of their base classes and have to redefine
methods that may leave objects in inconsistent states. Objects of such classes
may then no longer be substitutable for objects of base classes. A set of rules
called CAT rules extends the type check to prevent invalid substitutions. This
solution leaves the programmer alone with the problem. Even worse, there is no
syntactic difference between a derived class, whose objects are substitutable, and
other subclasses, and the compiler does not enforce the redefinition of inherited
methods when the invariant has been strengthened.

Fibonacci The database programming language Fibonacci [3] offers migrators,
but no class conditions. Fibonacci allows objects to migrate into classes with a
subtype, but not out of classes; because of substitutability this is type-safe, so
variables do not have to be checked. Fibonacci can therefore use a static type
check without compromising type-safety. On the other hand, this solution does
not help the programmer since it makes modelling the application domain very
hard; the demigration problem has simply been avoided.

DOOR, BCOOL The database object model DOOR [25] and the functional ob-
ject database language BCOOL [15] offer migrators that allow objects to gain
and loose types freely. References that became ill-typed due to an object drop-
ping a type are set to a null value. However, this requires to check the whole
database for such references and therefore does not scale well.

LOOM The knowledge representation language LOOM [4] offers constraining,
migration, mutability, and substitutability; it consequently drops static type
checking. It is based on predicate logic and includes a classifier that associates
objects with classes, which are called concepts in LOOM. Primitive concepts cor-
respond to normal classes, while defined concepts correspond to classes defined
by queries. Methods are not tightly bound to classes; rather, their applicability

is defined by predicates called situations, making them more flexible and de-
ferring the class membership test to run-time. The programmer has to invoke
the classifier explicitly, and the inference engine ensures that all references are
well-typed since type annotations are represented as constraints. Links between
objects are modelled using relations, and ill-typed links are removed from the
knowledge base. Here, the programmer has all means to model the application
domain closely, at the cost of possible run-time errors.

Role models Several role models have proposed solutions:

— In [10], roles are themselves objects that are components of other objects, so
application domain objects are represented by hierarchies of implementation
objects. Migration is performed by manipulating the internal hierarchy of
the object. The underlying language Smalltalk [9] supports only automatic
memory management, so role objects are kept alive as long as there are
references to them. The owning object may have dropped the role (migrated
out of a class) long before. Also, Smalltalk is dynamically typed and can
deal with run-time type errors.

— [19] introduces role objects just as in [10] and calls them aspects; however,
aspects may hide features of their base object and are therefore not substi-
tutable for them. [19] proposes to disallow the deletion of aspects as long as
there are references to them, without discussing an implementation.

Database views Views in OODBSs provide a means to define classes by constrain-
ing. However, most approaches [18] do not address the demigration problem but
concentrate on issues like positioning of derived classes in the class and type
hierarchy, combining constraining with extension, and updatability of objects in
derived classes. In [14], views can be used as classes; invalid references are set to
a null value like in [15], requiring a full scan over the whole database.

Database standards The ODMG standard [6] does not treat sets of objects as
classes, whether defined using OQL or not; instead it uses the term ’class’ to
mean ’abstract data type implementation’. It does not even use the term ‘view’
and lacks support for roles, too.

The current draft for the SQL3 standard [1] does not allow subtypes to
constrain inherited properties (following the proposal of [16]). However, using
the standard means for ensuring referential integrity, one can achieve cascading
delete or nullification if a row identifier (value of a REF type) becomes invalid
because the identified row was dropped from the referenced relation; this way,
roles could be simulated. This approach does not work for views since these
cannot be referenced, so it cannot support dynamic classification. It also does
not handle references from variables in (activation records of) procedures.

Schema evolution While migration is related to schema evolution, it is not the
same, nor can we adapt techniques from that area. With schema evolution,
classes are changed and their objects are converted to conform to the new class;

this is similar to migration. However, schema evolution is performed explicitly, for
all objects of a class at once®, and often excludes the implementation of methods.
This puts the burden on the programmer, without support on the language-level.
Schema evolution is not performed while methods are being executed, much
unlike general object migration.

4 Definitions

We now define an object model that supports constraining and migration.

4.1 Signatures, types, and their hierarchies

Types are sets of operation signatures, where a signature consists of the method
name, the number and types of the arguments, and the result type*; migrators
(see Sect. 4.2) have an additional fourth component in their signature. We re-
quire the method name to be unique within a type as a means of identification.
The implementation of a type consists of a sort and a function for each of its
signatures; a sort is a set of attributes and its elements are tuples from the
cartesian product of the attributes. An element of the type is an element of the
sort.

Types form a hierarchy: if a type T supports at least the operations of a
type U, it is called a subtype of U (T <yype U). This depends on a corresponding
hierarchy on signatures where subsignatures of a signature s can safely handle
argument lists intended for a call to s.

Definition 1 (Signature hierarchy). Let S = ng : sy X -+ X s = s, and
T =ns:t1 X - Xt = t,. be signatures.

S <ig T =

ne=nt Nk =1 (a)
A Sp jtype tr (b)
AViz1. kb jtype Sq (C)

Thus, the names and number of arguments must be equal (a), the type of the
result may vary with the hierarchy (b), and the types of the arguments may vary
against the hierarchy (c). This relation on signatures is called contravariance

[5]

The signature hierarchy allows types to not only add new operation signa-
tures but also change those they have in common with any supertype. Thus, the
subtype relationship is defined as follows:

% although the migration may technically be performed in a lazy way, i.e. on demand.
* Abstract data types also include a set of axioms describing relationships among the
signatures; these are not relevant to type checking.

Definition 2 (Type hierarchy). Let T = {t;|i € I} and U = {u;|j € J} be
types with signatures t; and u;, respectively, for some finite index sets I, J.

T Riype U <= Vu;3tiit; <sig uy
where <y, already assumes T <yype U.

Note that a subtype may add new signatures arbitrarily; this is called type
extension.

4.2 Objects and classes

OODMs are built around the notion of objects: an object is a unique identifier
(its identity) and has an associated state. A class C consists of a domain dom(C')
of possible objects, two types type(C') and mod(C) C type(C), and a condition
cond(C). A partial function statec : dom(C) < type(C) maps objects of the
domain to their local state; the domain {o € dom(C') | statec(0) # L} of that
function is called the extent ext(C) of class C.

cond(C) is a term of some predicate logic relating the results of methods
that are executed on the state of an object of the class. An element of the
type is a valid state for an object of the class if it satisfies the condition, i.e.
cond(C)(o0) = true Yo € ext(C) must hold.

The elements in type(C) are called methods and divided into selectors and
modifiers; mod(C) is the set of modifiers of class C. The result of a modifier
m € mod(C) is the new state of an object: statec(0) := m(o,...) iff the result
type of m is type(C). Modifiers with a result type T # type(C) are migrators:
if T =0, then they move objects out of the class (demigrators), otherwise their
signature must contain as fourth component the target class D, into which they
move objects, and T' = type(D) must hold. A class is a role class iff it is the
target class of some migrator.

Objects are manipulated by sending messages to them. Valid messages cause
the implementation associated to a matching signature in the type of the object’s
class to be executed. This run-time matching is called method lookup or late
binding. It allows the type of the first argument, the object, to vary with the
type hierarchy, thus in Definition 1:

51 jtype tl

without compromising type-safety with static type checks.
Finally, we note that the changes caused by modifiers are visible only via
selectors:

Definition 3 (Modifier for a selector). A modifier m is called a modifier
for selector s

<= 3 object o, values v;: s(0) # s(m(o,v;))

So, applying m to o causes a visible change in the state of o.

4.3 Subclasses

Objects can be in (the extent of) many classes; the resulting subset hierarchy is
called the class hierarchy. Classes have to be placed into this hierarchy by the
programmer using a binary relation <.,ss among classes:

Definition 4 (subclass). Let A, B;,i € I be some classes. If A < jass B; holds,
then A is called a subclass of each B; (B; a superclass, or base class, of A), and
ext(A) C dom(A) := ;o ext(B;). Therefore, objects in ext(A) have type(A) as
well as all type(B;); in general, the global type of an object is the union of the
types of all classes it is in, which is a subtype of the type of any such class:

type(o) := U

De{C|oeext(C)}type(D)
A class C is called a direct subclass of a class E if

C <class EA-3D:C <class D <class E

We require that no conflicts occur among the signatures in the global type of
an object; conflicts among implementations are resolved according to the class
hierarchy (see [22] for details). We call the union of the types of the superclasses
of a class its inherited type.

After placing a new class into the class hierarchy by inserting tuples into
< class, we can define its local type and condition:

— Specifying a type results in type extension.
— Specifying a condition can make the class a constrained class.

Note that objects of a superclass are not automatically objects of a subclass;
they have to be migrated explicitly. Views in object-oriented databases [18] and
predicate classes in Cecil [7] define classes where objects of superclasses migrate
automatically if they meet the condition; because of substitutability migration
into a class is type-safe. We call a class derived iff objects migrate into this
class implicitly. A derived class is always defined by a query and therefore a
constrained class. Demigrators of constrained and derived classes must not take
arguments besides the object that has to be demigrated, because they may have
to be called implicitly.

We now have to define when a class is considered a constrained class; specify-
ing a condition is necessary but not sufficient. For this, we allow the condition of
a class to contain method names from signatures of the types of its superclasses.
This can be used to either restrict the corresponding state, or to relate the
new local state to that defined in superclasses; these latter conditions involving
selectors of the new type are not considered constraining.

In order to specify exactly when the condition of a class C' has been strength-
ened in a subclass, we need to take transitive comparisons into account that may
relate features defined in C' via features of the subclass. To do so, we need the
comparison closure of a predicate.

Definition 5 (comparison closure of a predicate). A function 6 is a com-
parison operator iff

— its signature is 0 : T x T — {true,false} for some type T,
— and for all a,b,c € T the following holds (using infix notation):

abAbOc=abc
afb=(=(bOa)Va=Dh)

In abstract data types, these properties can be expressed with axioms.

Let T be a type and p be a predicate. A permutation of p is a predicate con-
structed from p by applying any number of transformations according to boolean
equivalences® .

The comparison closure closure(p) of p is defined by an iterative transforma-

tion process. Let p; denote the current result of this process, with py = p.

— For any comparison operator 0, if there is a permutation p' of p; with a
sub-expression a = c0 d A d 6 e and there is no permutation of p; with the
subexpression = cOdAdfeNcbe, i.e. a extended by the transitive comparison
c e, then we replace a in p' by B to get pi+1: piy1 :=p'[B/a].

This step is repeated until it is no longer applicable, resulting in a predicate
pr =: closure(p).

Lemma 1. For any predicate p with finite denotation, closure(p) exists and p =
closure(p) holds.

Proof. To proof existence, we show that the iteration stops eventually. The num-
ber of subexpressions a@b in p is finite since p itself is finite, and so the number of
comparison arguments is finite, too. The iteration step adds a new combination
of comparison arguments, and since their number is finite, that of the combina-
tions is also finite. Since the iteration step adds only new combinations, there
must eventually be a p; where every possible combination has been added, so the
iteration step is not applicable to p; and the process stops with closure(p) = p;.

To proof the equivalence, we use induction because closure(p) is constructed
iteratively, starting with py = p. For this, we show that p;11 = p; holds.

The predicate p;11 is constructed starting with a permutation p’ of p;. Since
all permutations are built by applying boolean equivalences, p’ = p; holds. Then,
pi+1 is identical to p’ except for the subexpressions a and 3, respectively. Since
f is a comparison operator, @ = ¢ e holds, and consequently o = 3. It follows
that p;1 1 = p’ = p; and, since = itself is a comparison operator, p;+1 = p;.

Since pp = p = p holds, induction proves that p = py = closure(p) holds. 0O

% These are transformations that preserve the truth value, e.g. aVb = bVa, aAb = bAa,
e =a, (aVb)Ve=aV (bVe), (aAb)Ac=aA(bAc), (aVb)Ac=(aAc)V (bAc),
etc.

In the next step, we filter out comparisons from predicates that involve features
defined in the subclass since these do not constrain inherited features; instead,
they restrict the possible results of the new features.

Definition 6 (projection of a predicate). Let p be a predicate and T a type,
i.e. a set of signatures. The projection of p on T, denoted by w[T|(p), is defined
as follows:

1. Letp' = Q : /\i:[l:k] p; be the prenex conjunctive normal form of p, with a
sequence) of quantifiers, and sq an empty set of predicates.

2. For each p;, if it contains a method name n for which there is no correspond-
ing signature in T, then s; = s;_1 else s; = s;—1 U {p;}.

Then, n[T](p) :=Q : /\quk q and contains only methods described by signatures
i T.

Now we have all the tools to define constrained classes. Using the comparison
closure, we can find constraints involving only inherited features via transitive
operators, and by projection we ignore comparisons with new features which are
irrelevant to constraining.

Definition 7 (constrained class). We call a class E constrained iff its condi-
tion is strictly stronger on its inherited type than the condition of a superclass C':

E constrained <
307D5 E <ciass D 2class C
A = (n[type(C)](closure(cond(D))) = w[type(C)](closure(cond(E))))

In words, E is constrained if it has a superclass D, whose condition is strictly
stronger than that of E, when only features of a common superclass C' are con-
sidered.

We call E directly constrained from D iff this class D is a direct superclass
of E.

Applying a modifier to an object of a constrained class can leave the object in a
state violating the class’s condition; it must consequently demigrate from that
class and all its subclasses. So, normal modifiers can be demigrators for con-
strained classes (and migrators for derived classes; see Lemma 2). It is obviously
sufficient to check only the conditions of directly constrained classes, in order to
find out from which classes an object may have to demigrate.

4.4 Variables

Variables are memory locations holding values which are said to be bound or
attached to the variable; we will consider only variables holding objects. Each
variable is annotated with a type, and it may only hold objects having that
type® (see Definition 4 for types of objects). For a state 4, let V; denote the set

6 We assume all variables to be polymorphic, i.e. objects with different types can be
attached to them.

of all variables and O; the set of all objects. Basically, the binding of objects to
variables is a function u; : V; — O; mapping variables to objects that varies over
time. Let 7(v),v € V, be the type annotation of variable v. Similarly, let (o)
denote the global type of object o in state i; this may change due to o migrating
in and out of classes. The binding p is type-safe iff

VivVu € Vi i(pi(v)) Stype (V)

because the subtype supports all operations of the supertype.

4.5 Classes as types
Classes can be used as types in most OOPLs. This has two aspects:

1. Variables annotated with a class may only refer to objects in the extent of
the class. In databases, this is called referential integrity; in programming
languages, variables bound to objects not in their class are called dangling
references.

2. Messages sent to the object attached to a variable are executed against the
state of the object”. So, the state of objects attached to variables annotated
with a class must be of a subtype of the type of that class.

Since subclasses are subsets and have (global) subtypes (both in the non-strict
sense), it is type-safe to bind objects of a class to any variable annotated with a
superclass; this is called substitutability.

5 Solutions

In Sect. 2 (Example 3), we have seen that constraining is dangerous because
an update may require demigration of an object, and most current OOPLs are
lacking support for migration. It follows that adding support for object migration
allows for constraining. However, the new problem is not easier to solve than the
old one. So, before discussing object migration in general in Subsection 5.2, we
offer a solution for constraining only.

5.1 Constraining reconsidered

To avoid the problem of constraining, [16] proposes to disallow the definition
of subclasses in this way altogether, in favour of mutability, substitutability
and static type checking. However, this decision is not appropriate for many
application domains. For example, in mathematics all objects are immutable
and constraining is common, so we would rather drop mutability. In fact, [16]
is too pessimistic: all four properties can be combined into a single language,
although not in a single class definition.

Mutability and constraining are mutually exclusive, if we want to retain static
type checking and substitutability. However, based on Definition 3 we can push
the choice between constraining and mutability into the class definition:

7 except for copying and assignment, of course.

Lemma 2. A modifier for a selector s can be a demigrator for any constrained
subclass with an invariant involving s.

Proof. Let C be a class with a selector s € (type(C) \ mod(C) and a modifier
m € mod(C), and D a constrained subclass of C' with cond(D) containing the
method name of s.

According to Definition 3, if m is a modifier for s then there exists an object
o € ext(C) such that s(o) # s(m(o,v;)). Since ext(D) C ext(C), this object
can be in class D with a state fulfilling cond(D). Applying m to the object o
may cause it to no longer fulfill cond(D) since cond(D) uses the selector s and
m is a modifier for s. Now, if cond(D)(o) does not hold, the object must be
removed from class D by applying the demigrator. Thus, the application of m
on o includes that of the demigrator, making m itself a demigrator for class
D. a

Therefore, we have the choice:

— If there is a modifier m for selector s, we disallow the definition of constrained
subclasses with invariants involving s since in any such subclass m would be
a demigrator.

— If a class is constrained by an invariant involving selector s, we disallow the
definition of modifiers for s for the same reasons.

So, a class is either mutable or constrained with respect to selector s.

This policy avoids implicit object migration caused by updates, and makes
constraining practicable without excluding mutability, substitutability and static
type checking from the whole language. However, it still disallows many class
definitions where constraining would be natural.

Example 5. Class PERSON is mutable with respect to selector get_address be-
cause of the modifier move. Therefore, we are not allowed to define the class
NEW_YORKER. This requires the programmer to manually make sure that PERSONs
are really NEW_YORKERs where they should be. |

5.2 Managing object migration

While avoiding migration as described in Subsection 5.1 looks like a solution, it
is generally preferable to handle it because of the benefits in modelling power.
There are several proposals for role models but none handles the demigration
problem satisfactorily (see Sect. 3). We found two ways to cope with demigration:

1. disallow the annotation of variables with constrained classes, so no variable
can become ill-typed because of a demigration, or

2. modify ill-typed variables after a demigration, by taking advantage of a
mechanism for general relationships.

The first solution is very limiting, but can be made practical with suitable sup-
port; this is discussed in Subsection 5.2. The second one offers a general solution,
but adds some overhead; we present its details in Subsection 5.2.

5.2.1 No variables of constrained classes The demigration of an object
from a class will leave variables annotated with that class ill-typed if they refer-
ence this object. If there are no variables annotated with a constrained class, they
trivially cannot become ill-typed. This is the approach taken by most object-
oriented database systems: even though they support selection views, they do
not regard them as classes, and consequently one cannot annotate variables with
them.

However, even if we accept these sets of objects as classes, this solution
makes constrained classes less useful because there is no way to access their
local features. A dynamic type check facility can help here:

Type guards like in Oberon [24] can help to simulate local variables of con-
strained classes, because they provide a dynamic type test. A type guard controls
a block by narrowing the type of a variable in that block: if the object bound to
the variable does not conform to the type, the block is skipped. So, if the block
is executed, it can safely assume that the object bound to that variable has the
required type, which can be that of a constrained class. However, the object may
not migrate out of that class within the scope of the block, so updates are not
possible, except for the very last statement in the block. Due to late binding, it
is hard to predict which update methods can safely be used, and due to aliases,
even method applications to objects attached to other variables might really
effect the object in question. Thus, the controlled block may only contain calls
to selectors, plus an optional last call to a modifier on the constrained variable;
note that a controlled block itself counts as a modifier if it ends with a modifier.

Ezample 6. In Example 3, no variable may be annotated with class NEW_YORKER.
If we want to access parts specific to NEW_YORKERs, for example the club they
visit, we have to use a type guard:

local p: PERSON
with (p as NEW_YORKER)
do
-- p has type NEW_YORKER in this block
print (p.club)
end
O

Note that this restriction is not necessary for role classes that are not con-
strained because with them demigration is explicit. If you do not call a dem-
igrator, directly or indirectly, then you can annotate local variables with role
classes. Since it is possible to determine statically whether a relevant demigrator
is in the closure of called methods, we can apply a static check. Because of late
binding, we have to consider all implementations of methods in all subclasses
when building the closure.

Correctness of the approach We now sketch a proof of the correctness of this
approach. In Sect. 4.4, we defined the mapping p of variables to objects to be
type-safe iff

ViVo € Vi: 7i(1:(v)) S iype T(V)

First, we partition V; according to the block in which variables are declared. We
interpret variables controlled by type guards as new variables in the controlled
block and call them controlled variables; let V. ; be the set of controlled variables.
Since for v € (V; \ Ve,;) the type annotation 7(v) is not a constrained class, the
standard attachment rule from Sect. 4.4 ensures type-safety, and we only have
to care for controlled variables.

Let (s1;---;sn) be the body of the controlled block s with controlled vari-
able vy, and (io;- - - ;%) the corresponding program states with i, Y 1. The
type 7(v,) may be a constrained class. Because of the type guard, 7, (14(vs)) Stype
7(vs) holds. Only the last statement s,, may be a modifier application and thus
may cause the object p(vs) to lose the type 7, _, (u(vs))=Ti, (u(vs)). However,
state s, is the state right after the controlled block s, and the variable vs; does no
longer exist. So, we conclude that p;(vs) is type-safe for all states ¢ in which v,
exists.

Since we have now examined all variables, the approach is type-safe for all
variables and in all program states.

5.2.2 Using a relationship mechanism After a demigration, some vari-
ables may be left ill-typed. To avoid type errors due to such dangling references,
we have to either redirect them, or set them to a null value. However, this
amounts to browsing the whole database for such references, plus local variables
in methods up the call chain. This is clearly undesirable, and should be avoided.

Fortunately, some object-oriented database models offer relationship mecha-
nisms that can handle this task more efficiently. Relationships describe relations
between objects that are navigable in all directions, thus allowing to find any
object holding a reference to a given one. Several relationship mechanisms have
been proposed in the literature [20, 8, 2] including one for the OODB standard
ODMG 2.0 [6].

Definition 8 (Relationship). A relationship R consists of a relation schema,
a condition, and an exception policy. The relation schema is a set att(R) of
attributes, some of them of class types (references). The extent ext(R) of a rela-
tionship is a relation over the given schema. Each tuple in the relation describes
a link between the objects in the class-typed attributes. The condition describes
valid tuples, with the special case of cardinality constraints. The exception pol-
icy specifies the behaviour in case of integrity violations; possible reactions are
removal of the offending tuples or abort of the transaction.

The relationship mechanism introduced here is presented in more detail in [21].

Object-oriented systems prefer an object-centred view on the world, and
relationships can support this preference by offering a per-object view on their
extent. All objects referenced from an attribute of a relation form a derived class
(defined by selection); in this class, we can define access methods to select the
objects related to a given one, thus giving the illusion of a simple reference. Such
methods can be defined for any class of objects referenced from attributes of the
relation, allowing navigation in all directions. It is therefore possible to find all

links that an object participates in, by simply selecting tuples from relations.
These relations are generally much smaller than the set of all objects, making the
selection much more efficient than a scan of the whole database. Relationships
also allow to react flexibly on integrity violations like the dangling reference
problem shown in Sect. 2. Both properties together make implicit migrations
harmless: Suppose an object participating in a relationship migrates out of the
class that the relationship assumes. This constitutes an integrity violation, and
the exception policy of the relationship is automatically checked:

— The standard behaviour is to remove all referencing tuples. This is equivalent
to setting referencing variables to a null value, and thus avoids type errors.

— If this is inappropriate, we can take advantage of database semantics and
specify to abort the transaction. This rolls back the change that caused the
demigration, and is suitable whenever the object must be in that class as
long as the link exists.

The suitable policy depends on the application domain:

Ezxample 7. Consider a library in New York and its customers. The library may
not want customers to move away if they still have books, so it chooses the abort
policy for its relationship BORROWED_BOOKS with attributes the_book: BOOK and
the_customer: NEW_YORKER. Each tuple in the extent of BORROWED_BOOKS de-
scribes who has borrowed which book. If a customer tries to move away from
New York and still has a book from the library, the demigration will cause an
integrity violation check on BORROWED BOOKS and consequently an abort of the
transaction: the customer must not leave New York with the book.

On the other hand, the New York clubs mentioned in Subsection 5.2 will
have to let members leave them and therefore choose the removal policy for
their relationship MEMBERSHIP. If a member migrates out of class NEW_YORKER,
the integrity check will remove the tuple with the dangling reference. So, the
object will simply cease to be a club member. O

Relationships are powerful but introduce some overhead. If the tuples are really
stored in a relation, then updates are simple but navigational access may be
slower. If the tuples are stored distributed in instance variables in the related
objects, then updates require consistent changes in all objects but navigational
access is fast. Relationships also require that all participants are objects; to apply
this approach to variables in blocks, the latter need to be modelled as objects
(like in Smalltalk [9]).

Correctness of the approach According to Sect. 4, we have to show that
ViV € Vit (1 (v)) Stype 7(V)

where p is the binding of variables to objects and i ranges over states. In this
approach, all relevant variables are attributes in some relationship, and other
occurences of references are computed by access methods. So the task is to show
that p is correct for all relationship attributes. The concept of relationships

makes this easy, since the detection of inconsistencies is part of the system®, not
the application. Let us assume that the current transaction ¢ started in state ig
and object o migrates out of class C; let i, > ig be the state immediately before
the demigration. Further, let rel be the set of all relationships and rel;, (0) :=
{r € rel | Ja € att(r):7(a) = C A3t € ext(r): u;, (t(a)) = o} those with a tuple ¢
that contains o in some attribute of type C' in state i.

It is enough to show that either of the exception policies leaves all relation-
ships r € rel;, (0) in a consistent state:

removal: Let ¢t € ext(r) be a tuple with y;, (t(a)) = o and 7(a) = C. Due
to the demigration, ¢t would be inconsistent in state igy1, so it is removed
from ext(r). It follows that ext(r) holds no such tuple in state i1, thus the
relationship r is consistent in that state®.

abort: Rolling back transaction ¢ will cause state i1 to be equal to state ig. If
the relationship r was consistent at the start of the transaction, it will also
be consistent in state ir41. If was inconsistent in state ip, it became so
in a previous transaction, and we perform the proof with that instead of ¢;
eventually we get a consistent state ¢,, since the empty database is consistent.

So, we have shown that relationships preserve type-safety under demigration of
objects.

5.2.3 The Perfect Mix Type guards and controlled variables can only be
used in blocks while relationships are best used only for inter-object links. Since
there is no overlap, we can combine both approaches: For inter-object references,
relationships must be used, while in blocks we allow constrained classes only for
variables controlled by type guards. Only non-controlled local variables in blocks
and method arguments'® may not be annotated with constrained classes, and
with role classes only if no demigrator is called, directly or indirectly, within the
block.

As a result, we are able to support demigration, whether implicit or explicit,
allowing constrained classes as well as general roles and views. There is no re-
striction on the use of these concepts in the data model.

6 Combining extension and constraining

Defining classes by constraining is uninteresting if these classes cannot have
additional local state or methods. It is therefore necessary to check how extension
and constraining can be combined. Classes can be extended in three ways:

8 If an object o migrates out of a class, the system has to check immediately all
relationships with an attribute of that class, to see whether they contain o.

9 at least with respect to typing; a similar proof can be given for other possible incon-
sistencies.

10 except for the first one, which is the target object. Late binding ensures type-safety
for this argument.

— local state to hold additional information

— new methods to manipulate the new state, or to offer functionality that only
applies to objects of the constrained class

— new implementations for inherited methods, typically in the form of addi-
tional actions

We will now examine each of these ways.

6.1 Extension by local state

Adding local state in a constrained class is possible, but the corresponding meth-
ods can only be accessed if the object is known to be in the class defining them
(or a subclass). This is discussed in the next Subsection 6.2. The state itself, i.e.
the element of the sort, is directly accessible only in implementations of methods
of the class.

Each object of a class is mapped to its local state, as specified by the modifier
of this class that was last applied to the object. It follows that constructors and
migrators of a class determine the first local state; this is called initialisation.

Because objects migrate implicitly into derived classes, there is no way to
initialise local state in these classes from arguments. The modifier that caused
the migration cannot initialise them because it is defined in a superclass. It
follows that the derived class must have a parameter-less constructor; the initial
state can thus only be derived from the current state of the object (and related
objects). There is no similar requirement for general constrained or role classes.

6.2 Extension by methods and implementations

For new methods, there is no initialisation problem because implementations
depend on classes, not on individual objects. But with static type checking, a
method can only be applied to objects that are known to be in a class with
a type that contains this method. Variables are annotated with types so that
only objects with conforming types can be attached to them. With the solution
presented in Sect. 5.2, new methods of constrained or role classes can only be
accessed via relationship links, inside the scope of a type guard, or, thanks to
late binding, in other methods of these classes'!; new methods of role classes
may also be used in blocks with no demigrator.

Adding implementations for inherited methods can be done in two ways,
depending on the language support:

conventional languages: redefine inherited methods
event-based languages: associate additional actions to events

Both approaches are described in the following subsections.

1 Late binding is a type guard for the current object, so methods are controlled blocks
with the controlled variable Current or this.

6.2.1 Redefining methods Conventional OOPLs map method calls to func-
tion executions, and let subclasses redefine this mapping by supplying an imple-
mentation for an inherited method. With late binding, the new implementation
will completely replace those defined in superclasses. It is therefore not possible
to simply add an action; the new implementation has to explicitly call the in-
herited implementation to achieve that effect. This leads to problems with late
binding.

Late binding will execute the implementation of the most specific class an
object belongs to. With constrained or role classes, objects may be in a set of
classes simultaneously, and there is often not a unique highest lower bound for
this set—and even if there is, the object does not necessarily belong to that class.
[22] presents an algorithm that adds conflict resolution classes to a given class
hierarchy to make late binding unambiguous even in the presence of role classes.

All role models have this method lookup problem if they support late binding.
However, constrained classes make the situation even worse: the relative position
of constrained classes in the class hierarchy is undecidable in general [12, 13]
because of the constraining predicates, so we have to assume that constrained
classes with the same superclasses are incomparable siblings. We can provide
means to place them explicitly in the class hierarchy so the programmer can
decide. Once the hierarchy is unambiguous, we can apply the conflict resolution
algorithm presented in [22].

6.2.2 The event-based approach Event-based OOPLs can associate several
actions, i.e. method executions, in different classes with an event. If an event
happens, all associated actions are performed in parallel. If the event is equivalent
to a selector, all results have to be combined into a net result using an aggregation
function (see [10, 11] for examples of such languages). In constrained classes, an
action can be associated with an event already handled in superclasses; this
action constitutes an extension of the implementation of the event.

This approach is simple and safe but limited to pure additions of actions.
There is no way to modify actions defined in superclasses, or to optimize them
by replacing them with algorithms that can take advantage of properties of the
subclass. Also, the aggregation of partial results may not be suitable to calculate
the net result, but there is no way to process intermediate results by different
aggregation functions. On the other hand, this approach is well suited to support
constrained classes because it does not require the classes to be explicitly placed
in the class hierarchy.

7 Conclusion

Subclassing by constraining and views are important modelling concepts that
lack support in current OODMs. Besides giving guidelines how to use constrain-
ing safely in OOPL data models, we have shown that role support is sufficient
to allow unrestricted constraining; role models are a well accepted concept in

OODMs. Our solution is based on another accepted concept, namely relation-
ships. Using relationship links instead of references helps to find ill-typed vari-
ables efficiently and handle invalid links flexibly. With our approach, constrained
classes, view classes and role classes can be used arbitrarily in the schema of any
application, and with some restrictions also in methods. Finally, we have shown
that constraining and extension can be safely combined under acceptable restric-
tions.

References

[1]
[2]

(3]

[5]

[6]

[9]

[10]

[11]

[12]

Database Language SQL (SQL/Foundation [SQL3]). ISO-ANSI working draft,
October 1997.

Antonio Albano, Giorgio Ghelli, and Renzo Orsini. A relationship mechanism for
a strongly typed object-oriented database programming language. In Proceedings
of the 17th International Conference on Very Large Data Bases, pages 565—575,
September 1991.

Antonio Albano, Giorgio Ghelli, and Renzo Orsini. Fibonacci: A programming
language for object databases. The VLDB Journal, 4(3):403-444, July 1995.
David Bril. LOOM Reference Manual Version 2.0. Technical report, University
of Southern California, December 1993.

Giuseppe Castagna. Covariance and contravariance: Conflict without a cause.
ACM Transactions on Programming Languages and Systems, 17(3):431-447, May
1995.

R.G.G. Cattell, Douglas Barry, Dirk Bartels, Mark Berler, Jeff Eastman, Sophie
Gamerman, David Jordan, Adam Springer, Henry Strickland, and Drew Wade,
editors. The Object Database Standard, ODMG 2.0. Morgan Kaufmann, San
Mateo, CA, 1997.

Craig Chambers. Predicate Classes. In Oscar Nierstrasz, editor, Proceedings of the
ECOOP ’93 European Conference on Object-oriented Programming, number 707
in Lecture Notes in Computer Science, pages 268-296, Kaiserslautern, Germany,
July 1993. Springer Verlag.

Oscar Diaz and P. M. D. Gray. Semantic-rich User-defined Relationships as a
Main Constructor in Object Oriented Databases. In Conf. on Object-Oriented
Databases, Windermere, July 1990.

Adele Goldberg and David Robson. Smalltalk-80: The Language and its Imple-
mentation. Addison-Wesley, Reading, MA, 1983.

Georg Gottlob, Michael Schrefl, and Brigitte Rock. Extending object-oriented
systems with roles. ACM Transactions on Information Systems, 14(3):268-296,
July 1996.

Torsten Hartmann, Gunter Saake, Ralf Jungclaus, Peter Hartel, and Jan Kusch.
Revised Version of the Modelling Language TROLL (Version 2.0). Informatik-
Bericht 94-03, Technische Universitit Braunschweig, 1994.

Andreas Heuer and Peter Sander. Classifying object-oriented query results in a
class/type lattice. In Proceedings of the 3rd Symposium on Mathematical Fun-
damentals of Database and Knowledge Base Systems, Rostock, MFDBS 91, vol-
ume 495 of Lecture Notes in Computer Science, pages 14-28, Berlin, May 1991.
Springer-Verlag.

[13]

[14]

[15]

[16]

[17]
[18]
[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

Andreas Heuer and Marc H. Scholl. Principles of object-oriented query languages.
In Hans-Jirgen Appelrath, editor, Proceedings GI-Fachtagung “Datenbanksysteme
fiir Biiro, Technik und Wissenschaft”, Kaiserslautern, volume 270 of Informatik-
Fachberichte, pages 178-197, Berlin, 1991. Springer-Verlag.

Christian Laasch. Deskriptive Sprachen fiir Objekt-Datenbanken. Master’s thesis,
Fakultat Informatik, Universitat Ulm, May 1994.

Christian Laasch and Marc H. Scholl. A functional object database language. In
Catriel Beeri, Atsushi Ohori, and Dennis E. Shasha, editors, Proceedings of the
4th International Workshop on Database Programming Languages, Workshops in
Computing, pages 136-156. Springer Verlag, August 1993.

Nelson Mattos and Linda G. DeMichiel. Recent design trade-offs in SQL3. SIG-
MOD Record (ACM Special Interest Group on Management of Data), 23(4):84-89,
December 1994.

Bertrand Meyer. FEiffel: The Language. Object-Oriented Series. Prentice Hall,
New York, N.Y., 1992.

Renate Motschnig-Pitrik. Requirements and Comparison of View Mechanisms for
Object-Oriented Databases. Information Systems, 21(3):229-252, 1996.

Joel Richardson and Peter Schwarz. Aspects: Extending Objects to Support Mul-
tiple, Independent Roles. In ACM SIGMOD Record, pages 298-307, May 1991.
James E. Rumbaugh. Relations as Semantic Constructs in an Object-Oriented
Language. In Proceedings of the ACM Conference on Object-Oriented Program-
ming: Systems, Languages and Applications (OOPSLA), pages 466-481, 1987.
Jiirgen Schlegelmilch. An Advanced Relationship Mechanism for Object-Oriented
Databases. Technical Report 19/1996, University of Rostock, Computer Science
Dept., 1996.

Jiirgen Schlegelmilch. Conflict Resolution using Derived Classes. In Dilip Patel,
Yuan Sun, and Shushma Patel, editors, Proceedings of the 3rd International Con-
ference on Object-Oriented Information Systems (O0IS’96), London, UK, pages
267-279, Berlin, December 1996. Springer Verlag.

Sven Thelemann. Assertion of Consistency Within a Complex Object Database
Using a Relationship Construct. In Micheal P. Papazoglou, editor, Proceedings
of the 14th International Conference on Object-Oriented and Entity-Relationship
Modeling, Gold Coast, Australia, volume 1021 of Lecture Notes in Computer Sci-
ence, pages 32—43, Berlin, December 1995. Springer Verlag.

Niklaus Wirth and Martin Reiser. Programming in Oberon - Steps Beyond Pascal
and Modula. Addison-Wesley, first edition, 1992. source code from the book is
available at: ftp://ftp.inf.ethz.ch/pub/software/Oberon/Books/PinOberon/.
Raymond K. Wong, H. Lewis Chau, and Frederick H. Lochovsky. DOOR: A
Dynamic Object-Oriented Data Model with Roles. Technical Report HKUST-
CS96-12, The Hong Kong University of Science and Technology, Department of
Computer Science, Clear Water Bay, Kowloon, Hong Kong, 1996.

Stanley B. Zdonik and David Maier, editors. Readings in Object-Oriented
Database Systems. Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1990.

