
University of Rostock
Department of Computer Science

Full Text Search in XML Documents

Cornelia Laudien
born 13.04.1977 in Rostock

Tutors: Andreas Heuer, Albert Maier, Denny Priebe

Abstract

The goal of this paper is to show how XML structure information can be used
for full text search in XML documents. Existing products for full text search are
investigated regarding their support of XML. The main aspect of this investigation
is how the search scope of queries is specified and narrowed by taking advantage
of the XML format. Considering the results of this investigation, a suggestion how
to realize XML support for IBM’s text search engine GTR is developed.

3

Contents

1 Introduction 5

2 XML 6

2.1 XML Overview . 6

2.2 XPath . 9

2.3 XMLSchema . 10

3 Existing Products for Text Search and Their Support of XML Docu-
ments 13

3.1 IBM/ DB2 XML Extender and Text Extender 14

3.2 Oracle/ InterMedia Text . 21

3.3 Microsoft SQL Server 2000 Text Search 25

3.4 Informix/ Excalibur Text Search DataBlade Module 25

3.5 Comparison . 26

4 GTR 30

4.1 Concepts . 30

4.1.1 Search Types . 30

4.1.2 Indexing . 32

4.2 GTR’s Suitability for XML Support 33

4.2.1 GTR’s Field Search . 33

4.2.2 GTR’s Adjacent Operation 34

4.2.3 Item Search . 35

4.2.4 Other Considerations . 35

5 Outlook 37

A Remarks about New Versions 38

A.1 Changes from Oracle InterMedia Text version 8.1.5 to version 8.1.6 38

4

1 Introduction

Full text search functionality has become an integrated part of modern database
management systems. With the fast growing XML technology and the rapidly
increasing number of XML documents, the importance of providing extended re-
trieval functionality for these structured documents is rising every day.
This means, it is a new feature of full text search functionality to use XML structure
information in order to narrow the search scope. The search scope, for example,
can be narrowed to specific sections of a document. In order to do so, text retrieval
products should be able to separate structure and content of documents. They have
to take advantage of the additional information about structure provided by docu-
ments of XML format.
The main part of this paper will investigate how market leading companies like
IBM and Oracle have realized this new feature.
At the beginning of this paper a brief overview of XML technology is given. Ma-
jor components are explained with an example, which will also be part of further
chapters.
Then criteria are introduced, which are used to analyze and compare the function-
ality of existing products that already support full text search in XML documents.
This investigation is performed particularly with regard to requirements of XML
documents and will not analyze general full text search functionality.
Furthermore, one of IBM’s text search engines will be presented. It is called GTR,
and its functionality will be investigated regarding its suitability for XML support.
The intention is to use GTR’s existing internal functionality and extend it for XML
support. Alternative search engines and the possibility of combining ORDBMS
with independent document management systems providing sophisticated retrieval
techniques (see [Nit00]) are not subject of this paper.
At the end the results of the comparison of existing products and the possibilities
of XML technology will be used to give a vision of future products with improved
text retrieval functionality for XML documents.

5

2 XML

This chapter focuses on XML technology that is already used or will be used in the
near future. The first part of this chapter gives an overview of XML 1.0. Although
the major components of XML are mentioned, the intention of this chapter is not
to be an XML tutorial. An XML document example will be presented to which
further chapter will refer to. The second part of this chapter introduces a language
called XPath for addressing parts of an XML document. In contrast to other lan-
guages, e.g. XQL (XML Query Language), XPath is a standard maintained by the
World Wide Web Consortium that uses intuitive directory notation.
The last part of this chapter concentrates on XML Schema, a language to describe
a schema for a class of XML documents. Unlike RDF (Resource Description
Framework) schemas, which provide information about the interpretation of the
statements given in an RDF data model, XML Schema gives specific constraints
on the structure of an XML document.

2.1 XML Overview

XML, the Extensible Markup Language, is an independent standard which is main-
tained by the World Wide Web Consortium’s XML Working Group and endorsed
by software industry market leaders. It is an extensible markup language for struc-
tured document definition and exchange. XML is a meta language with a simple,
intuitive syntax and a formal and verifiable design. This makes it extremly flexible
for every conceivable application.
The major components of XML will be described in the following.

Physical and logical structure: XML documents are comprised of reusable stor-
age units called entities, which can contain any type of named data, e.g.
character or binary. Entities can be parsed and unparsed, latter are not read
by XML parser. There are two main entity categories general and parameter
entities. General entities are used within the document content itself. Param-
eter entities are parsed entities that appear only in DTDs (see below).
Besides the physical structure represented by entities, XML has a logical
structure that allows to subdivide documents into sections and subsections,
so called elements and subelements. Each element has a type, identified
by a name, and may have a set of attributes. Attributes are in contrast to
subelements atomic qualifier of elements. The boundaries of an element are
delimited by tags, e.g. �paper�content�/paper� or in case of an empty
element �empty paper/�. Users have the ability to define new tags to suit
their specific requirements.

6

Well-formedness and validity: DTDs, document type declarations, represent doc-
ument schemas which specify the valid tags and the valid structure for doc-
ument classes. That means, an XML document is considered to be valid, if
it has an associated DTD and if the document complies with the DTD’s con-
straints. But an XML document can be delivered without a DTD, it doesn’t
need to be valid as long as it is well-formed. The well-formedness of an
XML document requires that the document contains at least one element,
but no element can partially overlap any other element, that means elements
must be nested properly. Moreover, there has to be exactly one root element
which cannot be contained in other elements.
Non-validating processors process the document entity and any internal DTD
subset for well-formedness. Validating processors must process the entire
DTD and all external parsed entities referenced in the document and must
report violations of all validity constrains of the XML Specification.

The following paper example presents an XML document with its DTD.

<?xml version="1.0" ?>
<!DOCTYPE paper [
<!-- BEGIN DOCUMENT TYPE DECLARATION -->
<!ELEMENT paper (meta,body)>
<!ATTLIST paper language CDATA #IMPLIED>
<!ELEMENT meta (title,author+,year)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT year (#PCDATA)>
<!ELEMENT body (chapter+,references?)>
<!ELEMENT chapter (paragraph*)>
<!ATTLIST chapter title CDATA #IMPLIED>
<!ELEMENT references (#PCDATA)>
<!ELEMENT paragraph (#PCDATA)>
<!-- END DOCUMENT TYPE DECLARATION -->
]>
<!-- BEGIN DOCUMENT -->
<paper language="en">
<meta>
<title>Full Text Search in XML Documents</title>
<author>Cornelia Laudien</author>
<year>2000</year>

</meta>
<body>
<chapter title="Introduction">introduction</chapter>
<chapter title="XML">
<paragraph>XML Overview</paragraph>

7

<paragraph>XPath</paragraph>
<paragraph>XMLSchema</paragraph>

</chapter>
<chapter title="Existing Products">
<paragraph>
IBM/DB2 XML Extender and Text Extender

</paragraph>
<paragraph>Oracle8i InterMedia Text</paragraph>

</chapter>
<chapter title="GTR">
<paragraph>Search Types</paragraph>
<paragraph>Indexing</paragraph>

</chapter>
<references>http://www.w3.org</references>

</body>
</paper>
<!-- END DOCUMENT -->

This example shows an instance of the paper document class.
The valid structure of the document class paper is specified in the first part of the
example as internal DTD subset. It defines that each paper element consists of
exactly one element called meta and exactly one called body. The meta element,
however, consists of exactly one element called title and one called year, but it
allows one or more authors. This is represented by ”+” after author. ”?” in case of
references signifies that the reference section can appear once within the document
but not necessarily. ”*” next to paragraph means, that a paragraph section can oc-
cur several times, but it doesn’t have to. Besides that, no default value is set for the
language and title attributes recognizable by the IMPLIED keyword. Furthermore,
the paper element is refered to as the root element, because it is not contained in
other elements.
The instance itself consists of meta data and a body. The meta data encompass the
title of the paper, its author and the year it was written. The body contains some
chapter and a reference part. Moreover, some of the chapter consist of several para-
graphs. This document is valid, because it complies with its DTD’s constraints.
Text within this kind of tags ”�� ������ � � �” represents a comment. Empty
elements and elements containing alternative subelements do not occur within this
example. However, they should be mentioned at this point, because they are of
interest for further investigation. Latter could look like this:

8

<!ELEMENT author (#PCDATA | (first_name, last_name))>
<!ELEMENT first_name (#PCDATA)>
<!ELEMENT last_name (#PCDATA)>

In this example author is an element of alternatives, because it can contain
PCDATA or the two subelements first name and last name. That means, docu-
ments containing the author’s name simply as a string are valid as well as docu-
ments that distinguish between first and last name. Further information, for exam-
ple regarding different content types, can be found in [W3C98].

2.2 XPath

The XML Path Language (XPath) is a standard maintained by the World Wide
Web Consortium. Besides that, XPath is a powerful language for referencing in-
formation within XML documents, and therefore it is of significant interest for
XML supporting retrieval systems. In order to address parts of an XML document,
XPath models the document as a tree of element nodes, attribute nodes and text
nodes. Moreover, it uses a directory notation to perform queries. Querying XML
documents by XPath means selecting nodes to determine which elements within a
document satisfy a given set of criteria.

Location Path: The most important construct of XPath is the location path. It se-
lects a set of nodes relative to the context node which represents the current
position within the document tree. The following list describes the abbre-
viated location path syntax according to the example of chapter 2.1. This
list reflects the most interesting features without claiming completeness. A
comprehensive description can be found in [W3C99].

1. / Selects the document root.

2. /paper/body/chapter Selects all chapter element children of the body ele-
ment child of paper. That means, all four chapters are selected.

3. /paper/body/chapter[1]/paragraph Selects all paragraph element children
of the first chapter of the body element child of paper. The result of this
query against the example document of chapter 2.1 would be empty, because
the first chapter does not contain any paragraph elements.

4. /paper/body/chapter[@title=”XML”] Selects all chapter of the body ele-
ment child of paper that have a title attribute with value ”XML”. In this case,
the second chapter will be returned as result.

5. chapter//paragraph Selects all paragraph element decendants of the chap-
ter element children of the context node.

9

6. paragraph Selects the paragraph element children of the context node. If
the context node represents a chapter element, then all paragraphs will be
returned otherwise the result will be empty, because only chapter elements
contain paragraph elements.

7. . Selects the context node.

8. ../@* Selects all attributes of the context node’s parent. If the context node
is a paragraph, then the title of the chapter would be selected.

2.3 XMLSchema

XML Schema is a definition language that can be used to formally describe a
schema. The purpose of a schema is to define a class of XML documents, and
the term ”instance document” is used to describe an XML document that conforms
to a particular schema. Beside that, XML Schema is a working draft of the World
Wide Web Consortium.
Unlike DTDs, the mechanism supplied by XML 1.0 for declaring constraints on
the use of markup, XML Schema uses XML syntax to describe a schema. This is
convenient since it does not require to learn a completely new syntax just to de-
scribe the grammar. In addition, XML Schema offers a number of other significant
advantages over DTDs. Some of them will be described in the following using the
paper document class of chapter 2.1 as an example.

<xsd:schema xmlns:xsd="http://www.w3.org/1999/XMLSchema">
<xsd:element name="paper" type="PaperType"/>

<xsd:complexType name="PaperType">
<xsd:element name="meta" type="MetaType"/>
<xsd:element name="body" type="BodyType"/>
<xsd:attribute name="language" type="xsd:language"/>
</xsd:complexType>

<xsd:complexType name="MetaType">
<xsd:element name="title" type="xsd:string"/>
<xsd:element name="author" type="xsd:string"

minOccurs="1" maxOccurs="3"/>
<xsd:element name="year" type="xsd:positiveInteger"/>
</xsd:complexType>

10

<xsd:complexType name="BodyType">
<xsd:element name="chapter" minOccurs="1"

maxOccurs="unbounded"/>
<xsd:complexType>
<xsd:element name="paragraph" type="xsd:string"

minOccurs="0" maxOccurs="unbounded"/>
<xsd:attribute name="title" type="xsd:string"/>
</xsd:complexType>

<xsd:element name="references" type="xsd:string"
minOccurs="0" maxOccurs="1"/>

</xsd:complexType>

</xsd:schema>

Types: All elements and attributes of the paper doctype of chapter 2.1, e.g. pa-
per and title, can be found within this schema. However, unlike a DTD,
XML Schema allows to specify a data type for elements and attributes. XML
Schema provides simple and complex types. Simple types built-in to XML
Schema shown in the example are string, language and positiveInteger. At-
tributes can only be of simple type. ENTITY, NMTOKEN, ID and IDREF
are also provided by XML Schema, but they can only be used in attributes
to ensure compatibility with XML 1.0 DTDs. Elements that contain subele-
ments or carry attributes are said to be of complex types, whereas elements
that contain numbers, strings, dates .. ,but do not contain any subelements
are said to be of simple types. The paper, meta, chapter and body elements
are of complex type, because they contain subelements and attributes. Fur-
thermore, simple and complex types can be named or unnamed. The paper
element is of a named type called PaperType, but the type of the chapter el-
ement is an unnamed respectively anonymous type. Anonymous types are
convenient especially if many types have to be defined that are referenced
only once and contain very few constraints. A type defined as anonymous
type saves the overhead of having to be named and explicitly referenced.
New types can be derived from existing types by restriction or extension.
For example, there could be a new type derived by restriction of the posi-
tiveInteger type called YearType, that allows values equal to 1990 or bigger.

<xsd:simpleType name="YearType"
base="xsd:positiveInteger">

<xsd:minInclusive value="1990"/>
</xsd:simpleType>

11

Occurrences of elements: The definitions of complex types in the paper schema
all declare sequences of elements that must appear in the instance docu-
ment. The occurrences of individual elements declared in the so-called con-
tent models of these types may be optional, as indicated by a 0 value for
the attribute minOccurs or otherwise constrained depending upon the val-
ues of minOccurs and maxOccurs. For example, the references element is
optional. Furthermore, the number of authors could be limited to 3, which is
not possible to realize with DTDs.

Namespace: A schema can be viewed as a collection of type definitions and ele-
ment declarations whose names belong to a particular namespace. Each of
the elements in the paper schema has a prefix xsd: which is associated with
the XML Schema namespace through the declaration,
xmlns:xsd=”http://www.w3.org/1999/XMLSchema”, that appears in the
schema element. The prefix xsd: is used by convention to denote the XML
Schema namespace. The same prefix, and hence the same association, also
appears on the same of built-in simple types, e.g. xsd:string. The purpose of
the association is to identify the elements and simple types as belonging to
the vocabulary of the XML Schema language rather than the vocabulary of
the schema author.

Within this XML chapter, major components of XML have been introduced and it
has been shown that XML is an intuitive and flexible language. In the next chapter,
the investigation of how market-leading companies provide full text search within
XML documents will be of interest.

12

3 Existing Products for Text Search and Their Support of
XML Documents

Today’s database technology vendors provide different products for full text search
with different support of XML documents. The object-relational DBMSs of IBM
and Informix have already been analyzed in [Por99] regarding unstructured and
structured document support. Since the publication of this master thesis new re-
leases have been delivered, and the new functionalities especially concerning XML
support are of interest. However, the requirements of XML document’s on retrieval
systems discussed in [Por99] will be the base to evaluate the new functionalities of
IBM’s, Oracle’s, Informix and Microsoft’s object-relational DBMSs. For this rea-
son, the criteria will be listed again briefly at this point. The criteria do not demand
the complete functionality of an XML query language like XQL. To understand
the following part, knowledge about the logical structure of XML documents is
required; a brief description gives the chapter 2.1 XML Overview.
There are criteria for update operations and search criteria. An XML support-
ing text retrieval system:

� Should be able to insert and update XML documents with and without a
DTD.

� Should be able to extract XML data, that means, it should have the ability to
extract sections as well as entire documents.

� Has to update the text search index after insert, update and delete operations.

� Has to be able to separate structure and content, in order to take advantage
of structured documents.

� Should have the ability to search certain sections and attributes.

� Should support queries that search the distance not only among terms but
also among sections.

� Should support queries whether an element contains a certain subelement or
not. This can be important for elements containing alternative subelements.

� Should support data-typing. It is an important criterion for comparing at-
tribute values or querying element content that are not of type string.

� Should not leave out structure elements when creating the index, not even
structure elements that occur in stopword lists1.

1A stopword list contains words that will be disregarded when creating an index.

13

The current SQL Multimedia Standard for Full-Text from 1999 requires certain
search methods for the user-defined type FullText, but they do not apply to struc-
tured documents like XML documents. For this reason, the conformance to the
standard is not a criterion for evaluating the new functionalities of the following
products.

3.1 IBM/ DB2 XML Extender and Text Extender

The XML Extender and the Text Extender support XML in database applications.
DB2’s XML Extender Version 7 provides the ability to store and access XML doc-
uments. Furthermore, XML documents can be generated from existing relational
data or decomposed respectively shred into relational data. Therefore, the XML
Extender supports two storage and access methods, XML column and XML col-
lection.

Figure 1: Storing an XML document in a DB2 table column

XML column enables the user to store intact XML documents as shown in fig-
ure 1. The document is inserted into a column that is enabled for XML and
can be updated, retrieved and searched. Element and attribute data can ad-
ditionally be mapped to DB2 tables, so-called side tables, which in turn can
be indexed for fast structural search. The mapping of the XML document
structure to DB2 side tables is defined with the XML-based document ac-
cess definition (DAD) language supported by the XML Extender. There is
one DAD for each XML column. The XML Extender provides XMLVar-
char, XMLCLOB and XMLFILE as user-defined types for use with XML
column. Using the XML column method, the user can perform structural
text search with the Text Extender. However, XMLFILE is not supported by
the Text Extender.
Structured document support has been added to DB2’s Text Extender Version
6. In order to limit the scope of a search to a particular section of documents,

14

the user must create a document model. This document model contains the
markup tags that identify the chosen sections and descriptive section names,
which will be used in queries against that section. Current information can
be found in [IBM99].

Figure 2: Storing a decomposed XML document in DB2 tables

The XML collection method gives the user the ability to either decompose in-
coming XML documents, or compose outgoing XML documents. Figure 2
shows a decomposed XML document in DB2 tables. Elements and attributes
are mapped to relational schema according to the XML collection’s DAD.

For further information about the XML column or XML collection method see
[IBM00].

Criteria for Update Operations

Insert: On the one hand, the XML Extender provides a DTD repository to store
DTDs. When the user inserts an XML document either with the XML col-
umn method or with the XML collection method, he can specify a DTDID in
the DAD file to relate a certain DTD to it. The DTDID is a path specifying
the location of the DTD on the local system. That means, validation is only
possible against an external, locally residing DTD. When the DAD file is
processed, the XML document will be validated according to this DTD. On
the other hand, XML documents can be stored without a DTD. In this case,
documents will not be processed for well-formedness.

Update: It is possible to update the entire XML document by replacing the XML
column data, but it is also possible to update values of specified elements
or attributes using XPath like expressions. Updating element content is re-
stricted. Only text content of the element itself can be changed. It is not
possible to add or delete subelements, that means, it is not possible to update
the structure of a document.

15

The following example shows the update of the year element’s content using
the Update UDF (User Defined Function):

UPDATE paper_table
set xml_doc = Update(xml_doc,’/paper/meta/year’,’2000’)
WHERE paper_id = 1

xml doc is a column enabled for XML containing entire XML documents.
In general, the user can choose between two methods, casting functions or
the Update UDF, for updating the data. Both methods do not relate to the
DTD repository, therefore updated documents will not be processed for well-
formedness and validity.
When updating a column that is enabled for XML, the XML Extender auto-
matically updates the side tables to reflect the changes.
Updating decomposed documents results from executing the usual
SQL Update statement.

Update text index after updating XML documents: Updating the search index
is not a database managed event. It occurs either according to the Text Ex-
tenders update frequency settings or immediatly after executing the update
index command.

Extract XML data: On the one hand, the user has the possibility to retrieve an
entire document by using casting functions. The following example retrieves
XMLVARCHAR and stores it in memory as a VARCHAR data type:

SELECT db2xml.varchar(xml_doc) FROM paper_table

On the other hand, the user can retrieve element content or attribute values
by using user-defined extract functions.

SELECT extractVarchar(xml_doc,’/paper/meta/author’)
FROM paper_table

In this example, the extract UDF retrieves the element author from the col-
umn xml doc as a VARCHAR data type. There are about ten different data
types supported by extract functions.
The path specified as parameter of the extract UDF should be a path down
to an element containing PCDATA. If a path like ’/paper/meta’ for the ex-
ample document of chapter 2.1 is specified, then an empty result is returned,
because the meta section itself does not contain PCDATA. The result is not a
content summary of the subelements title, author and year. Querying a path
that does not specify a leaf of the document tree is only useful, in case of this
UDF, when the specified section is of mixed content type (see [W3C98]).
Empty elements return empty results.

16

Search Criteria

Separation of structure and content: Besides the ability of separating sentences
and paragraphs, which has already been available in earlier versions, the
Text Extender can now search a particular section of a document. Sections
are delimited by start and end tags. The Text Extender provides two kinds
of sections. There are plain-text sections that have no type and there are
sections with a declared type that are called attribute sections. Attribute
sections are simple sections delimited by start and end tags and should not
be mistaken for element’s attributes. The supported attribute section types
are DATE, TIME, FLOAT, and INTEGER. Nested attribute sections are not
allowed. Attribute sections are supported in Text Extender version 7.
However, the power of section search is limited:

� The dual index cannot be used to take advantage of document structure.

� The ngram index doesn’t support the XML format.

� The user has to know the structure of the document in order to specify
sections that will be searched. It is not possible to query whether a
document contains a certain section or not.

With the XML Extender, elements and attributes can be distinguished. Fur-
thermore, they can be mapped to object relational schema according to the
DAD file of XML collection. That means, search against the structure of
the document can be mapped to schema queries. Content search represents
queries against the content of the table’s particular column. To specify sec-
tions in the DAD file, XPath compliant expressions are used.
Moreover, the XML Extender creates a default view in case of XMLcolumn,
that joins the application table and the side tables. The user can use this view
to search column data and query side tables.
Although XML Extender and Text Extender are able to separate sections,
they are not able to distinguish, for example, between the first and the last
chapter of the paper example. It is not possible to narrow the search to this
point.

Section search: There are two possibilities for section search with the Extenders.
On the one hand, the user can decompose the XML document with the
XML collection method and enable the required columns for Text Extender’s
search functionality. For example, assume that the paper example document
is decomposed whereat paragraph sections are stored in a separate column
para in the para table. The column is enabled for Text Extender’s text search
with the handle column named para handle2.

2The handles in the para handle column indicate where the paragraph text index is located.

17

Then a query could look like this:

SELECT para FROM para_table
WHERE DB2TX.contains(para_handle,

’PRECISE FORM OF "Indexing"’)=1

As a result of this query, all paragraphs of para table that contain the precise
form of the string ”Indexing” will be returned.
On the other hand, the user performs the XML column method, enables the
column for Text Extender and specifies the required sections in the docu-
ment model file before creating the index. In case of empty elements, empty
results will be returned.
The model name must be the same as the tag name of the root element.

A document model file could look like this:

[MODELS]
modelname = paper

[paper]
paper = paper
paper/anystring = paper/body/chapter/paragraph

First the model’s name paper is defined. Then sections are related to this
model. The right-hand side specifies the path through the document tree
down to the particular element. Elements are seperated by ”/”. However,
the section name identifier on the left-hand side that is used in queries could
be any name. Moreover, the possibilities of specifying the search scope is
limited to point 2 of the XPath expressions of chapter 2.2.
Using the XML column method, the above example query would look like
this, when the paper document is stored in a column of the paper table with
the handle column named paperhandle.

SELECT paper_id FROM paper_table
WHERE DB2TX.contains(paperhandle,

’MODEL paper SECTION (paper/anystring)
PRECISE FORM OF "Indexing"’)=1

As a result of this query, all paper identifier of paper table whose paper con-
tain the precise form of ”Indexing” within the anystring sections (paragraph
sections) will be returned. In this case, it is necessary to use the MODEL
and SECTION keyword in order to limit the scope of a search to particular
sections. Besides, the Text Extender allows to mask a section name within a

18

query using wildcared characters.
Furthermore, the user can use equality comparison and value ranges to search
documents containing attribute sections. For example, the year section of
the paper example is an attribute section of type INTEGER. Then the search
term:

’MODEL paper SECTION (paper/meta/year) = 1999’

will search for documents published in 1999.
By the way, the user does not have to use the XML Extender to save XML
documents in DB2 in order to perform section search by Text Extender. It
is also possible just to enable the entire XML document as text file for Text
Extender.
Moreover, the XML Extender can be used for searching XML documents
with direct queries on side tables or searching from a joined view, for exam-
ple the default view as mentioned above, or with extract UDFs.

SELECT paper_id FROM paper_table
WHERE db2xml.extractVarchar(xml_doc,

’/paper/meta/author’)
like ’Laud%’

This query using an extract UDF will return all paper identifier of paper table
whose paper contain author elements with a value that starts with ’Laud’.

Search attributes: Attribute values can easily be queried in three different ways:

� When an attribute has been mapped to a separate column by XML col-
lection method using SQL

� When an attribute has been mapped to a side table by XML column
method using SQL

� When an attribute resides as part of an intact document using XML
Extender’s extract UDFs

The following shows an example for extract UDFs:

SELECT paper_id FROM paper_table
WHERE db2xml.extractVarchar(xml_doc,

’/paper/body/chapter/@title’)
like ’%XML%’

This query will return all paper identifier of paper table whose paper contain
chapter title similar to ’XML’.
Attributes cannot be specified in the Text Extender’s document model file.
That means, attributes and its values cannot be querried by Text Extender’s
functionality.

19

Proximity search: Text Extender’s proximity search can be combined with sec-
tion search. That means, search terms can be found in the same sentence or
paragraph within a specified section. For example, the search term:

’MODEL paper SECTION (paper/body/chapter) "search"
IN SAME SENTENCE AS "documents"’

searches documents where ”search” and ”documents” appear in the same
sentence and the sentence is part of a chapter section.
However, the distance among elements, e.g. the distance to the root element,
cannot be investigated.

Inclusion: With the Text Extender it is not possible to query whether an element
contains a certain subelement or not.

Data-typing: When elements or attributes are mapped to relational schema by the
XML collection method, a different type besides string can be related to it.
This type can be any basic datatype provided by DB2. In this case, identity
and range search can be performed according to the datatype.
Text Extender’s search terms can only be strings except if attribute sections
appear within the document. Then range search can be performed as de-
scribed in section Section search.

Indexing: All tags of sections enabled for section search are not indexed and can-
not be searched.
Tags that are not defined in the document model file are indexed according to
the index type. Stopwords3 are disregarded even if they appear within tags.

Generally speaking, the XML Extender is a powerful DB2 extension for inserting,
updating and extracting XML data. The Text Extender provides sophisticated full
text search functionality that can be used to search XML documents. IBM’s solu-
tion of providing the possibility of combining both extenders enables the user to
perform extensive full text search in XML documents.

3The user can define words that will not be indexed so-called stopwords, e.g. and, or, then, if.
Defining stopwords keeps the index small.

20

3.2 Oracle/ InterMedia Text

Oracle provides several components, utilities and interfaces to take advantage of
XML technology. Oracle’s key product that supports full text search in XML doc-
uments is InterMedia Text.
InterMedia Text version 8.1.5 can be used to perform searches on XML documents
stored in Oracle8i by indexing the XML as plain text or as document sections. High
full text functionality is provided, such as exact match search, search with boolean
expressions, word stem, fuzzy and free text search, phonetic and proximity search,
search for synonyms and section search. In the following the main focus will be on
section search.
The user can follow three basic strategies when storing and searching XML docu-
ments in Oracle8i:

� The first is to store an XML document as a single, intact object with its
tags in a CLOB or BLOB. In order to store an XML document as an intact
object Oracle’s SQL*Loader tool can be used.

� The second strategy is to store the XML document as data and distribute
it untagged across object-relational tables. This functionality is provided by
the XML SQL Utility (XSU). XSU provides the means to map XML doc-
uments to the underlying object-relational storage. It allows to extract data
from an XML document, then insert the data into a table, update a table, or
delete corresponding data from a table. The corresponding command is ’Or-
acleXML putXML’. It also allows to retrieve the object-relational data as an
XML document. This means, the user can generate an XML document given
an SQL query or a JDBC resultset object. The corresponding command is
’OracleXML getXML’.

� The last strategy is combining XML documents and data using views.
The user just creates a view that, for example, combines an XML document
stored in a column and its meta data stored in different columns.

Criteria for Update Operations

Insert: When an XML document is inserted, it will not be processed for validity or
well-formedness. It is the user’s responsibility whether to include Oracle’s
XML Parser in his application or not.
If the document gets mapped to the object-relational schema and its structure
is not compatible with the structure of the database schema, the user must
transform the data into the correct format before writing it to the database.
An element name has to be equal to its corresponding relation’s attribute
name or vice versa. In order to do so, XSL (Extensible Stylesheet Language)
stylesheets or other programming approaches are recommended.

21

Update: It is possible to update the entire XML document by replacing the exist-
ing one using the SQL*Loader Replace statement.
It is also possible to update values of elements, but only when the specified
element sections have been mapped to a separate column. Then the SQL
Update statement or XSU (OracleXML putXML) can be used to update the
element’s content.
Updated documents will not be processed for well-formedness or validity.

Update text index after updating XML documents: Oracle provides two ways
of updating the text index. On the one hand, the index is updated immediatly
and automatically whenever there is an insert, delete, or update to the base
table. This is known as background DML4 processing. On the other hand,
the user can update the index in batch mode by executing the alter index
command. When synchronizing the index in batch mode, Oracle processes
pending updates and inserts stored in the DML queue.

Extract XML data: On the one hand, the user has the possibility to retrieve an
entire document. However, it is not possible to extract parts of an intact
XML document.
On the other hand, the user can retrieve element content by executing the
SQL Select statement if the XML document was decomposed. This does not
apply to attribute values.

Search Criteria

Separation of structure and content: Oracle gives the user the ability to sepa-
rate sections. These sections can be zone sections, field sections or special
sections. Latter specify sentence and paragraph sections. Zone sections and
field sections are sections delimited by start and end tags. Zone sections can
be nested within one another, can overlap and can occur more than once in
a document in contrast to field sections that cannot nest or overlap and are
non-repeating. To be able to index element content as zone or field sections
and to search these sections, the user has to know the structure of the docu-
ment.
Although InterMedia Text is able to separate sections, it is not able to dis-
tinguish, for example, between the first and the last chapter of the paper
example. It is not possible to narrow the search to this point.
If the user followed the second strategy, storing the XML document as data
across object-relational tables, search against the structure of the document
can be mapped to schema queries. Content search represents queries against
the content of the table’s particular column.

4Data Manipulation Language

22

Section search: In order to search sections within an intact XML document the
user has to create a section group of type XML SECTION GROUP. After-
wards field sections and zone sections can be added or removed from this
section group. For example:

begin
ctx_ddl.create_section_group(’xmlgroup’,’XML_SECTION_GROUP’);
ctx_ddl.add_zone_section(’xmlgroup’,’Chapter’,’chapter’);
ctx_ddl.add_field_section(’xmlgroup’,’Title’,’title’,TRUE);
end;

In this example an XML section group called xmlgroup is created and a zone
section called Chapter and a field section called Title are added to it. The
third parameter of the add xxx section statement is the tag that marks the
section.
Besides, the user can decide whether the content of a field section is visible
or not. For example, assume that the title element of the paper example is
a field section defined with visible flag set to false. Then the search request
for:

SELECT paper FROM paper_table
WHERE CONTAINS(xml_doc,

’Full Text Search in XML Documents’)>0

without specifying the field section title will not find the example document.
Only the query:

SELECT paper FROM paper_table
WHERE CONTAINS(xml_doc,

’Full Text Search in XML Documents
WITHIN Title’)>0

will be successful, because it explicitly specifies the title field.
If the user followed the second strategy of storing XML documents decom-
posed, he can create an index for the required column and query it by search-
ing its index without using an xml section group.

Search attributes: Attributes cannot be searched by InterMedia Text’s section
search. Furthermore, XSU does not provide the functionality to map XML
attributes to columns. For this reason, it is not possible to search for attribute
values.

Proximity search: Oracle’s proximity search is basically performed by using the
WITHIN operator. However, this operator cannot nest. For example, it is not
possible to query:

23

’(search and documents) WITHIN SENTENCE
WITHIN Chapter’

which should find documents where ”search” and ”documents” appear in the
same sentence and the sentence is part of a chapter section. Another way to
perform proximity search is to use a combination of the WITHIN operator
and the NEAR operator. NEAR returns a score based on the proximity of
two or more search terms. For example:

SELECT paper FROM paper_table
WHERE CONTAINS(xml_doc,’near((search, documents),10)

WITHIN Chapter’)>0

This will return documents where the maximum distance between ”search”
and ”documents” is 10, and both terms appear in the same chapter section.
The NEAR score defines the distance between the search terms. The highest
score is 100.
The distance among elements, e.g. the distance to the root element, cannot
be investigated.

Inclusion: With Oracle’s InterMedia Text it is not possible to query whether an
element contains a certain subelement or not.

Data-typing: When elements are mapped to relational schema by the XML SQL
Utility, a different type besides string can be related to it. This type can
be any basic datatype provided by Oracle. In this case, identity and range
search can be performed according to the datatype. Oracle’s InterMedia
Text’s search term can only handle strings.

Indexing: Tags are not indexed and cannot be searched when an XML section
group is specified as parameter for indexing.

Generally, Oracle’s InterMedia Text is a powerful database extension that enables
the user to perform sufficient full text search in XML documents.

24

3.3 Microsoft SQL Server 2000 Text Search

The new Microsoft SQL Server 2000 is XML-enabled. Among other things, it
allows queries to be sent directly to SQL Server via URL with the results re-
turned as XML formatted documents. The SQL Server 2000 provides full text
search concepts. Although the supported features are entry-level, they still serve
many full text searching purposes for users. Exact match search, search terms with
boolean expressions, ranking search, word stem and free text search are provided.
Moreover, restricted use of wildcared and proximity search are part of the features.
However, all these features do not apply to documents of XML format.

3.4 Informix/ Excalibur Text Search DataBlade Module

XML will be supported by the newest version of the Informix Web DataBlade
module. An early developer’s release will be made available later this year. Hier-
archical XML Data Storage will give the ability to import, export, store and query
XML structures in their native format.
Informix provides high full text search functionality, which covers exact match
search, search with boolean expressions, ranking, word stem and free text search,
wildcared and proximity search and search for synonyms. This is described in de-
tail in [Por99]. The Excalibur Text Search DataBlade Module does not yet provide
section search in XML documents.

Having looked at different products regarding their support of full text search func-
tionality for the XML format, the next section will compare the results of the above
investigation.

25

3.5 Comparison

In this chapter the previously analyzed products will be compared. However, Mi-
crosoft and Informix do not yet provide products that are enabled for full text search
in XML documents. For this reason, they are not regarded in the following com-
parison.
At first the advantages and disadvantages of IBM’s and Oracle’s products regard-
ing the criteria for update operations will be listed. Afterwards the products will
be compared according to the search criteria. Final remarks will complete this
chapter.

Criteria for Update Operations

Insert: IBM’s and Oracle’s products provide the functionality to store an XML
document decomposed as relational data as well as an entire, intact XML
document.
It is the advantage of IBM’s XML Extender that it provides additional func-
tionality like:

� Providing XML specific types

� Validation against DTD when storing XML documents

� Ability of decomposing attributes

� Generating additional side tables when storing intact XML documents.

However, in both cases the problem of mapping the XML document struc-
ture to relational schema results for decomposing. The user is in charge of
providing structure and mapping information. In case of the XML Extender
the user has to write a DAD file. In case of XSU the user has to change the
document structure according to the relational schema. In both cases, the
user is not able to decompose XML documents of unknown structure.

Update: IBM’s and Oracle’s products provide the functionality to update entire
XML documents and update content of decomposed elements.
Providing an additional Update UDF is the advantage of IBM’s XML Ex-
tender, because it allows to update element’s text content within an intact
XML document, although the document structure itself cannot be changed.
Furthermore, attribute values can be updated by the XML Extender.
However, in both cases updated documents will not be processed for well-
formedness and validity.

Update text index after updating XML documents: Text Extender and InterMedia
Text provide functionality for updating the text index immediatly after an
XML document has been changed, and later as a batch update. The advan-
tage of Oracle’s InterMedia Text is the fact that the search index update is a
database managed event.

26

Extract XML data: IBM’s and Oracle’s products provide the functionality to re-
trieve entire documents and content of decomposed elements. It is the ad-
vantage of IBM’s XML Extender that it provides additional extract UDFs.
These extract UDFs can extract elements content as well as attribute values
of intact XML documents and convert the result to a selected data type. The
disadvantage is the fact that in contrast to user’s expectation the result does
not include the content of existing subelements.

Figure 3 summarizes the results of this paragraph.

IBM Oracle

Insert + o
Update XML docs + o
Update text index o +
Extract XML data o o

Figure 3: Comparison - criteria for update operations

The characters have the following meaning:
- : The functionality is not supported.
o : The functionality is supported.
+ : The functionality is supported and additional, helpful features are provided.

Search Criteria

Separation of structure and content: IBM’s and Oracle’s products provide the
functionality to recognize sections, that means, they are able to separate
structure information and content. But in case of an element that occurs
multiple times within a document, they are not able to narrow the search to
the first, second or last section of this element.

Section search: IBM’s and Oracle’s products provide high full text search func-
tionality in combination with section search; it does not matter whether a
section is part of an intact document or a result of a decomposition.
Both provide similar concepts; InterMedia Text’s zone section is similar to
Text Extender’s plain-text sections and field sections are similar to attribute
sections. The advantage of Oracle’s field section is the fact that the user can
decide whether it is visible or not. It is the advantage of IBM’s attribute sec-
tion that it allows range search.
However, both Text Extender and InterMedia Text ask the user for specify-
ing in advance which sections he wants to search. In case of Text Extender,
the user has to specify a document model. In case of InterMedia Text, the
user has to create an XML section group with its components.

27

It is an advantage of IBM’s XML Extender that it can also be used to perform
simple search queries without specifying the required sections in advance.

Search attributes: IBM’s Text Extender and Oracle’s InterMedia Text and XML
SQL Utility do not support attributes. The advantage of IBM’s XML Exten-
der is the fact that it makes attribute search possible.

Proximity search: IBM’s and Oracle’s products provide the functionality to com-
bine proximity search and section search. However, the distance among ele-
ments cannot be investigated.

Inclusion: IBM’s and Oracle’s products do not provide the functionality to allow
queries whether an element contains a certain subelement or not.

Data-typing: IBM’s and Oracle’s products provide the functionality to relate data
types provided by their DBMS to element sections that will be decomposed.
It is an advantage of IBM’s XML Extender that it provides additional extract
UDFs that convert their result to a selected data type. Providing internal data
type mapping for attribute sections is an advantage of the Text Extender.

Indexing: Oracle’s InterMedia Text does not index any XML structure informa-
tion. IBM’s Text Extender, in contrast, does not index information specified
in the document model file. Both solutions are not satisfying when queries
against structure information are demanded.

Figure 4 summarizes the results of this paragraph.

IBM Oracle

Separation of structure and content o o
Section search + +
Search attributes + -
Proximity search o o
Inclusion - -
Data-typing + o
Indexing - -

Figure 4: Comparison - search criteria

The characters have the following meaning:
- : The functionality is not supported.
o : The functionality is supported.
+ : The functionality is supported and additional, helpful features are provided.

28

Concluding it is to say that IBM and Oracle provide products that make full text
search in XML documents possible. They are able to separate structure and con-
tent in order to take advantage of the information about structure. They recognize
sections, so that it is possible to narrow the search scope within documents. This
results in improved information retrieval.
However, this can be more improved, for example, through supporting all func-
tionality provided by XPath or automatic structure analysis and indexing.
Of course, IBM’s advantage is the XML Extender. It provides XML specific types
and functions that allow extensive information retrieval in combination with the
Text Extender.

29

4 GTR

GTR is an IBM text search engine. GTR stands for Global Text Retrieval. It will
replace the existing IBM Text Search Engine (TSE), which is currently used within
the DB2 Text Extender. Until now, GTR does not support XML. This chapter will
introduce GTR’s concepts and provide suggestions how to support XML by GTR.
The intention is to use GTR’s existing internal search functionality and extend it
for XML support.

4.1 Concepts

In contrast to many other text retrieval products, GTR is not based on dictionaries.
Instead of performing keyword search, it focuses on the aspect of consecutive char-
acter pattern. No stopword list will be created. Every information of a document
is kept, when it is indexed by GTR.
GTR consists of a set of functions for high speed text search. GTR’s text search
functions can easily be integrated into an application program. Moreover, GTR
provides thesaurus functions to improve search conditions, see [IBM97] for fur-
ther information.
In the following GTR’s search type and indexing concepts will be introduced.

4.1.1 Search Types

Two different search types are provided by GTR, full text search and item search.

Full Text Search Full text search is a function to search for documents using
search terms contained in the documents, e.g. search for ”XML” within the abstract
”This article is about XML ..” . The following search functionality is supported for
full text search:

� Exact match: GTR searches for the terms exactly as typed.
’”database”#C’ finds documents containing the term ”database”. A case sen-
sitve search is performed.

� Fuzzy search: GTR searches for words that are spelled in a similar way to
the search term. Occurences of misspelled words could be found.
’”database”%75’ �� The string ”database” is searched for with 75 percent
matching level.

� English word stemming: GTR searches also for variations of the search
terms, such as the plural of a noun, or a different tense of a verb.
’”communicate”%STEM’ �� ”communication”, ”communicating” are also
searched based on English inflection rule.

30

� Wildcard search for alphabetical/ alphanumerical words: Masking charac-
ters represent optional characters within the search term. Therefore, search
is more flexible and the number of matching documents increases.
”data*” �� Documents containing ”database”, ”data”, ”datatransfer” can
be found.

� Field search: Only specific parts of documents will be searched.
’”database”@F10’ �� Only field 10 is searched for ”database”.

� Boolean operations: Search terms can be combined with other terms using
the boolean operators ”*”(AND), ”+”(OR), and ”!” or ”-”(NOT).
’(”database” + ”storage”) * ”IBM”’ �� Documents that contain either
”database” or ”storage” and ”IBM” are searched.

� Adjacent operation (proximity search): GTR searches for documents that
contain all the specified search terms within the same segment. A segment
could be a sentence or a paragraph or others. For example search for docu-
ments that contain ”database” and ”IBM” within one sentence.

� Ranking search: GTR returns an absolute value that indicates how well the
document met the search criteria relative to other found documents. The
following three factors are selectable to determine the score of documents:
frequency of search terms in the document, frequency of search terms in the
whole set of documents, weight parameter specified explicitly by the user
program. An example for a weight specified by user program:
’”more important term”$200 + ”less important term”$100’ �� ”more im-
portant term” is interpreted twice as important as ”less important term”.

Item Search While full text search scans natural language document text itself,
item search is a function to search for documents using formatted attribute data,
e.g. author name, creation date or category code. The formatted attribute data
can be of character or numeric type. Besides, item without and item with multiple
values for one document are allowed, that means, if an author name item exists,
multiple authors could be assigned to one document.
The following search functionality is provided for item search:

� Character item search

– Exact match: GTR searches for documents which character item value
is identical to the specified value. For example, a search by an author
named ”John” will find documents whose author item value is ”John”
but not ”John Doe”.

– Wildcard: GTR searches for documents whose character item value
differs from the specified value only in the masked characters. The
search term ”Jo* Doe” can find documents that have an author item
value like ”Jo Doe” or ”John Doe”.

31

� Numerical item search

– Numerical item matching: GTR searches for documents whose numer-
ical item value is equal to the specified value. For example, searching
for all documents published in 1999 means, the pubyear item value of
a document has to be equal to 1999.

– Range search: GTR searches for documents whose numerical item
value is smaller or bigger than the specified value. Searching for doc-
uments published after 1995 and before 1999 means: 1995 � pubyear
item value � 1999.

The difference between the character item search and the full text field search is that
the character item search returns documents whose character item value is equal
to the given value instead of returning documents that contain the search term in a
certain field. Figure 5 shows an example containing text and attributes.
Ranking is not supported in the case of item search.
Text search condition and item search condition cannot be specified together, but
it is possible to combine text and item search. The easiest way to realize it is
to specify the result of item search as a scope of text search. From the documents
satisfying the search condition, only the documents contained in the specified scope
are selected.

Figure 5: Text Search versus Item Search

4.1.2 Indexing

GTR’s function set allows to create, update and delete indexes. Therefore, two
different index files are provided by GTR, the main index file and a supplemental
index file. The index data for newly added documents is automatically written into
the supplemental index file. Both indexes can be merged. Search, of course, is done

32

to main and supplemental index. The advantage of the supplemental index file is
the fact that search systems can achieve real-time frequent document registration.
To keep track of every document the application program has to provide a unique
document number for each document. This number is at least zero and must be
assigned in ascending order. The document number will be passed to the create
index function for indexing and will be returned as the result of a search request.

4.2 GTR’s Suitability for XML Support

With the ever-increasing importance of XML, retrieval needs to support the struc-
ture of documents efficiently. GTR provides interesting functionality that can be
used to support XML. This chapter is a collection of ideas, it is not a specification
and does not claim completeness.
In the following three sections GTR’s field search, adjacent operation and item
search will be described more detailed. The given information is of interest for
further investigation regarding GTR’s aptitude for XML support.

4.2.1 GTR’s Field Search

As mentioned above GTR provides the ability to search only specific parts of a
document by field search. The specific part to be searched is identified by a field
number and the user program has to specify where the field is located and what
field number is assigned to it. This information will be used for indexing. There
can be more than one field assigned to one field number. However, the fields as-
signed to the same field number are not allowed to be nested or to overlap. The
field number can reach from 1 to 65535. When a field search is requested the field
number needs to be assigned to the search terms.
On the one hand, field search could be used to search element’s content. In order
to recognize a certain element, a field number would be assigned to its section. If
an element occurs several times then all its sections will be assigned to the same
field number. Within a specified field all other full text search functionality, e.g.
fuzzy search or wildcard, is provided.
For example to search the author, chapter and paragraph sections of the example
in section 2.1 the following would be done: The author element could be assigned
to field number 1, all chapter sections could be assigned to field number 2 and all
paragraph sections could be assigned to field number 3. It would not be allowed to
assign all chapter and paragraph sections to the same field number, because they
nest.
On the other hand, field search could be used for searching the structure of an
XML document. Questions whether documents contain certain elements or at-
tributes could be answered. Therefore, each tag itself would be considered as a
field that starts with ”�” and ends with ”�”. The restriction does not apply in
this case, because tags never nest or overlap in well-formed XML documents. All

33

tags could be assigned to the same field number, there is no restriction mentioned
regarding the number of sections assigned to one field number. Otherwise each tag
gets its own field number. To limit the cost only start tags would be considered,
because they contain all necessary information.

4.2.2 GTR’s Adjacent Operation

With the adjacent operation the user can search for documents that contain search
terms within the same segment. In order to enable such a way of search, the
information identifying the locational limitation needs to be built into the index
when those documents are indexed. There can be different kinds of text segments.
Each kind of segment relates to a different separation-rule. A separation-rule num-
ber is assigned to each separation-rule. GTR allows 33 different separation rules.
The separation-rule number 0 is already assigned to the sentence separation-rule.
Within each rule the end of a segment needs to be specified. In this case: ”.”, ”!”
and ”?” followed by a blank character mark the end of a sentence. When an ad-
jacence search is requested the separation-rule number needs to be assigned to the
search terms.

Figure 6: Adjacent Operation

A user program can give a meaning to separation-rules from number 1 to 32. To
have the ability of section search a separation-rule could be created for each ele-
ment that will be searched. Therefore, each tag of the element will be a separation
mark. The resulting separation of the paper example regarding the author element
is shown in figure 6. Within each rule only the end of a segment can be specified,
that means, start and end tags are treated in the same way. This raises the prob-
lem that the user cannot focus on the required sections (section 2 in case of the
example in figure 6). The problem could be solved by managing the segment sep-
aration pointer in a particular way. In case of empty element tags, the separation
rule could be defined in a way that there won’t be any segment separation pointers
for this kind of tags.

34

However, compared to GTR’s field search, adjacent operation does not really meet
the requirements of exactly recognizing sections.

4.2.3 Item Search

Item search could be used in the case when XML documents are mapped to rela-
tional schema. Columns containing attribute values or element’s content could be
indexed and searched by item search. Moreover, GTR’s function set allows it to
combine full text search and item search. A search request could look like this:

SELECT paper_id
FROM paper_table
WHERE CONTAINS(paperhandle,’ "XML" and "year=2000"’)=1

instead of :

SELECT paper_id
FROM paper_table
WHERE CONTAINS(paperhandle,’ "XML"’)=1 and year=2000

This query searches for papers that contain the string ”XML” and were published
in the year 2000. The year element seperately stored as attribute is considered to
be an item. In the first case, the string would be searched by full text search and the
year attribute would be searched by item search. The specified paperhandle would
contain the index information for the text and for the item index. In the second
case, the year would be searched by the DBMS itself.
Even though item search is faster than full text search, DBMS are optimized for the
kind of queries that can be answered by item search. For this reason, using DBMS
functionality should be prefered in this case.

4.2.4 Other Considerations

Structure information: The fact that the user has to know the document struc-
ture and has to specify the sections he wants to search in advance has been
criticized in earlier chapters. For this reason, it is suggested, that the docu-
ment model should be created automatically containing all possible search
paths. These paths should be of the intuitive XPath notation. Moreover, this
document model file can then be viewed by the user in order to get structure
information.

35

Furthermore, XML gives users the possibility to define tags that suit their
specific requirements. Usually a given element name relates to the element’s
content. Assume documents that contain an element called database, and
its content provides information about DB2, Informix or Oracle. Moreover,
tags are not indexed. Then a search request looking for database information
within these documents will not be successful unless the term database itself
occurs again within the section. Because of that, it would be reasonable to
keep structure information as part of the index. In this case, the document
model file itself can be indexed.

Highlighting: GTR provides a function for highlighting the found character string.
As a result of a search, the location of the found character string is returned,
by the unit of character. GTR supports a function to convert the location into
the location by the unit of byte. Through this function, the user program can
find the location of hits as the format of offset bytes from the beginning of
the document, and can easily highlight the searched character string when
browsing the document.
In the case that structure information is indexed, and the searched character
string is an element name, then the entire content of the element should be
highlighted since browsers do not display structure information.

This chapter shows that GTR is able to separate structure and content in order to
take advantage of structured documents. GTR’s field search provides the ability
to search certain sections and attributes. Furthermore, the idea of automatically
generating and indexing the model file allows queries whether an element contains
certain subelements or not. Performing this kind of queries is not possible in cur-
rent products and has been critized in chapter 3.
Because this chapter is a collection of ideas, further, more detailed investigations
are necessary in order to develop a complete specification of GTR’s support for the
XML format.

36

5 Outlook

Important steps have been made in order to extend the existing full text search
functionality to use the advantages of the XML format. However, XML technol-
ogy provides more features that can be used by text retrieval systems. Some of
them have already been mentioned in earlier chapters. One of them is the XPath
standard, which should be used more extensively to specify search scopes. Fur-
thermore, XML Schema provides significant advantages over DTDs as described
in chapter 2.3, and it is already used in many applications. For this reason, func-
tionality in order to validate not only according to DTDs, but also according to
XML Schemas should be provided.
Moreover, XML specific query languages should be considered. The SQL-Contains-
extension with its search argument becomes more complex the more structure and
other search information it contains. For example, the XML information server of
the Software AG called Tamino uses XQL as query language besides SQL.
Finally the SQL Multimedia Standard for Full-Text should be reviewed and up-
dated regarding full text search in structured documents.

37

A Remarks about New Versions

It should be noticed that new versions of products have been delivered during the
time of writing this paper. One of them is a new version of Oracle’s InterMedia
Text, version 8.1.6. This is mentioned because functionality that was critizised in
this paper has been improved, and suggestions that were made have been realized.
Although the practical investigation of the new features could not be done as part
of this paper, they should at least be listed.

A.1 Changes from Oracle InterMedia Text version 8.1.5 to version
8.1.6

Search attributes: Attribute search is now possible in the new version. In order
to search attributes, attribute sections can be added to XML section groups.
The attribute itself is specified in tag@attribute form.

Section search: An additional section group type called AUTO SECTION GROUP
has been added to the new version. When it is specified, it automatically
creates a zone section for each start-tag/end-tag pair in an XML document.
Attribute sections are also created automatically if applicable.

Proximity search: It is now possible to create nested WITHIN queries.

38

List of Figures

1 Storing an XML document in a DB2 table column 14

2 Storing a decomposed XML document in DB2 tables 15

3 Comparison - criteria for update operations 27

4 Comparison - search criteria . 28

5 Text Search versus Item Search 32

6 Adjacent Operation . 34

39

References

[Bou00] Bourret, R.: XML Database Products, March 2000,
http://www.informatik.tu-darmstadt.de/DVS1/staff/bourret/xml/XMLDatabaseProds.htm

[IBM97] IBM Corporation: GTR V3 Specification, 1997

[IBM99] IBM Corporation: DB2 Universal Database Text Extender: Administra-
tion and Programming, June 1999.

[IBM00] IBM Corporation: XML Extender Administration and Programming,
2000.

[Inf97] Informix Software Inc.: Excalibur Text Search DataBlade Module,
July 1997.

[Jun99] Jung, F.,Software AG: XML Backgrounder Technology and Applications,
December 1999, http://www.softwareag.com

[Mic98] Microsoft: Textual Searches on Database Data Using Microsoft SQL
Server 7.0, 1998.

[Nit00] Nitzsche,R.: Kopplung von Volltext- und Datenbanksystemen. Master
Thesis, University of Rostock, Germany, 2000.

[Opp99] Oppel,K.,Software AG: Tamino, Der Information Server für Electronic
Business, October 1999.

[Ora99] Oracle Corporation: Oracle8i interMedia Text Reference, 1999.

[Ora00] Oracle Corporation: Oracle XML SQL Utility (XSU), April 2000.

[Por99] Porst, B.: Untersuchungen zu Datentyperweiterungen für XML-
Dokumente und ihre Anfragemethoden am Beispiel von DB2 und
Informix. Master Thesis, University of Rostock, Germany, 1999.

[W3C98] W3C XML Working Group: Extensible Markup Language (XML) 1.0,
February 1998, http://www.w3.org/TR/REC-xml

[W3C99] W3C XML Working Group: XML Path Language (XPath) 1.0,
November 1999, http://www.w3.org/TR/xpath

[W3C000] W3C XML Working Group: XML Schema Part 0: Primer,
April 2000, http://www.w3.org/TR/xmlschema-0

[W3C001] W3C XML Working Group: XML Schema Part 1: Structure,
April 2000, http://www.w3.org/TR/xmlschema-1

[W3C002] W3C XML Working Group: XML Schema Part 2: Datatypes,
April 2000, http://www.w3.org/TR/xmlschema-2

40

