

The Theory behind Minimizing Research Data

Problem

Application

- Different applications dealing with growing amounts of data:
- Research data management with measurement data
- Sensor data management for smart (assistive) systems aiming at the derivation of activity and intention models by means of Machine Learning algorithms
- Aim: Describing traceability, reconstructibility and replicability of the path from data collection to publication

Aim of our research project

- Reducing the primary measurement or sensor data to an important kernel
- Calculating the kernel even after updating databases or database schemes
- \Rightarrow Minimizing the sub-database that has to be stored to guarantee the reproducibility of the performed evaluation

Unification of Provenance and Evolution

- ullet Goal: Performing provenance queries $Q_{
 m prov}$ after evolution ${\cal E}$ of databases and database schemes
- Idea: Combination of provenance with schema and data evolution
- \bullet Wanted: New minimal sub-database to be archived $J^*\subseteq J$
- \Rightarrow Calculation of a new query $Q'(J(S_3))$ from the old query $Q(I(S_1))$

Example

- ullet Schemas: S_1 , S_2 and S_3
- ullet Query: Q with minimal sub-database $I^*\subseteq I$
- Provenance Query: Q_{prov} with input $K^* \subseteq K$
- \bullet Schema evolution: ${\mathcal E}$ with minimal sub-database $J^*\subseteq J$

Calculation of a minimal part of the database (minimal sub-database)

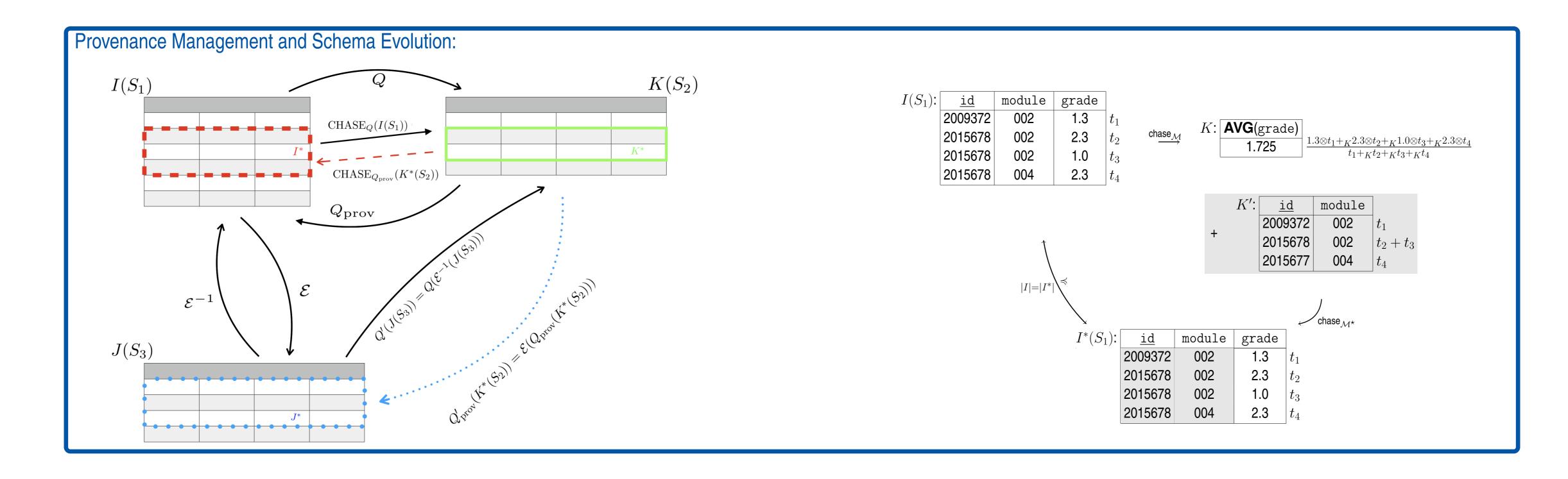
- Different constraints for the sub-database to be determined:
- Number of tuples of the original relation remains unchanged.
- The sub-database can be mapped homomorphically to the original database.
- The sub-database is an intensional description of the original database.
- ullet Question: Which additional information is required to be able to reconstruct the minimal part I^* of the database I if the result and the evaluation query Q are both archived?
- ullet Idea: Calculation of an inverse query Q_{prov} with input $K^* \subseteq K$ to determine the minimal sub-database
- ⇒ Type of inverse depending on the additional information noted

Example

- Schemas: S₁, S₂ and S₃
 Query: Q = AVG(grade)
- Minimal sub-databases:
- $-I_a^*(S_1) \subseteq I(S_1)$ without extension $K'(S_2')$
- $-I_b^*(S_1) = I(S_1)$ with extension $K'(S_2')$
- Provenance Query: $Q_{prov} = AVG^{-1}(grade)$
- Input for Q_{prov} : $K^*(S_2) = K(S_2)$ \Rightarrow existence of a
- result equivalent CHASE-inverse for I_a^*
- tp-relaxed CHASE-inverse for I_h^*
- exact CHASE-inverse for I_c^*

	$I_a^*(S_1)$:	<u>id</u>	module	grade	
	•	η_{id_1}	η_{module_1}	1.725	$]t_1$
	$I_b^*(S_1)$:	<u>id</u>	module	grade	
)		η_{id_1}	η_{module_1}	1.3	$]t_1$
		$ \eta_{id_2} $	η_{module_2}	2.3	$ t_2 $
)		η_{id_3}	η_{module_3}	1.0	$egin{bmatrix} t_3 \ t_4 \end{bmatrix}$
J		η_{id_4}	η_{module_4}	2.3	$ig t_4$

$I_c^*(S_1)$:	<u>id</u>	module	grade	
	2009372	002	1.3	$ t_1 $
	2015678	002	2.3	$ t_2 $
	2015678	002	1.0	t_3
	2015678	004	2.3	$ t_A $



CHASE-inverse schema mappings

Combining the techniques

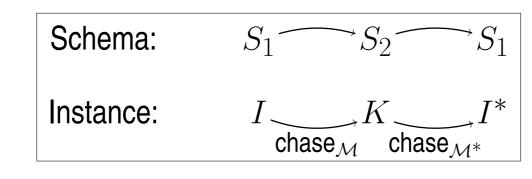
- CHASE:
- CHASE incorporates dependencies \star in an object \bigcirc , i.e.

$$\mathsf{chase}_{\star}(\bigcirc) = \bigstar$$

— Source-to-target tuple-generating dependency (s-t tgd):

$$\forall \mathbf{x} : (\phi(\mathbf{x}) \to \exists \mathbf{y} : \psi(\mathbf{x}, \mathbf{y}))$$

- \Rightarrow Express the evaluation query Q as a schema mapping $\mathcal{M}=(S_1,S_2,\Sigma)$ with source and target schemas S_1 and S_2 and a set of dependencies Σ
- Provenance Management: traceability of a result back to the relevant original data
- CHASE&BACKCHASE:



Types of CHASE-Inverses

- CHASE-types:
- Exact CHASE-inverse: Reconstructs the complete original database
- Tuple preserving relaxed CHASE-inverse: Preserves the number of tuples
- Result equivalent CHASE-inverse: $\operatorname{chase}_{\mathcal{M}}(I) = \operatorname{chase}_{\mathcal{M}}(I^*)$
- ullet Reduction: result equivalent \preceq relaxed \preceq tp-relaxed \preceq exact
- Conditions for the existence of CHASE inverse:

CHASE inverse	sufficient condition	necessary condition
Exact	-	$I^* = I$
Classical	Exact CHASE-inverse	$I^* \equiv I$
Tp-relaxed	Exact CHASE-inverse	$\mid I^* \leq I, \mid I^* \mid = \mid I \mid \mid$
Relaxed	Tp-relaxed CHASE inverse	$I^* \preceq I$
Result equivalent	Relaxed CHASE-inverse	$I^* \leftrightarrow_{\mathcal{M}} I$