The Theory behind Minimizing Research Data

Problem

Application
- Different applications dealing with growing amounts of data:
 - Research data management with measurement data
 - Sensor data management for smart (assisted) systems aiming at the derivation of activity and intention models by means of Machine Learning algorithms
- Aim: Describing traceability, reconstructibility and replicability of the path from data collection to publication

Aim of our research project
- Reducing the primary measurement or sensor data to an important kernel
- Calculating the kernel even after updating databases or database schemes
- Minimizing the sub-database that has to be stored to guarantee the reproducibility of the performed evaluation

Unification of Provenance and Evolution
- Goal: Performing provenance queries \(Q_{prov} \) after evolution \(\mathcal{E} \) of databases and database schemes
- Idea: Combination of provenance with schema and data evolution
- Wanted: New minimal sub-database to be archived \(J' \subseteq J \)
 - Calculation of a new query \(Q'(I(S_j)) \) from the old query \(Q(I(S_j)) \)

Example
- Schemas: \(S_1, S_2 \) and \(S_3 \)
- Query: \(Q = \text{AVG}(\text{grade}) \)
- Provenance Query \(Q_{prov} \) with input \(K^* \subseteq J \)
- Schema evolution: \(\mathcal{E} \) with minimal sub-database \(J' \subseteq J \)

Calculation of a minimal part of the database (minimal sub-database)
- Different constraints for the sub-database to be determined:
 - Number of tuples of the original relation remains unchanged.
 - The sub-database can be mapped homomorphically to the original database.
 - The sub-database is an intensional description of the original database.
- Question: Which additional information is required to be able to reconstruct the minimal part \(J' \) of the database \(J \) if the result and the evaluation query \(Q \) are both archived?

Example
- Schemas: \(S_1, S_2 \) and \(S_3 \)
- Query: \(Q = \text{AVG}(\text{grade}) \)
- Minimal sub-databases:
 - \(\mathcal{E}(S_1) \subseteq \mathcal{E}(S_1) \) without extension \(K'(S_3) \)
 - \(\mathcal{E}(S_1) = \mathcal{E}(S_1) \) with extension \(K'(S_3) \)
- Provenance Query \(Q_{prov} = \text{AVG}(grade) \)
- Input for \(Q_{prov} \): \(K^* = K(S_j) \)
 - existence of \(a \)
 - result equivalent CHASE-inverse for \(K' \)
 - tp-relaxed CHASE-inverse for \(K' \)
 - exact CHASE-inverse for \(K' \)

CHASE-inverse schema mappings

Types of CHASE-inverses
- CHASE-types:
 - Exact CHASE-inverse: Reconstructs the complete original database
 - Tuple preserving relaxed CHASE-inverse: Preserves the number of tuples
 - Result equivalent CHASE-inverse: \(\text{CHASE}(\mathcal{M}) = \text{CHASE}(\mathcal{M}') \)
 - Reduction result equivalent \(\leq \) relaxed \(\leq \) tp-relaxed \(\leq \) exact
- Conditions for the existence of CHASE inverse:

Combining the techniques
- CHASE:
 - CHASE incorporates dependencies \(\leftrightarrow \) in an object \(\odot \), i.e.
 - \(\text{CHASE}(\odot) = \odot \)
 - Source-to-target tuple-generating dependency (s-t tgd):
 - \(\forall (x) \rightarrow (y) \text{ s.t. } \langle x, y \rangle \)
 - Express the evaluation query \(Q \) as a schema mapping \(M = (S_1, S_2, \Sigma) \) with source and target schemas \(S_1 \) and \(S_2 \) and a set of dependencies \(\Sigma \)
- Provenance Management: traceability of a result back to the relevant original data
- CHASE+BACKCHASE

Schema:
\[S_1 \rightarrow S_2 \rightarrow S_3 \]

Instance:
\[\begin{array}{c}
\text{PROV} \\
\text{CHASE} \\
\text{BACKCHASE}
\end{array} \]

Tanja Auge, Andreas Heuer

INSTITUTE OF COMPUTER SCIENCE | DATABASE RESEARCH GROUP | UNIVERSITY OF ROSTOCK, ALBERT-EINSTEIN-Straße 22 | 18059 ROSTOCK, GERMANY