
Database support for automotive analysis ?

Dennis Marten, Holger Meyer, and Andreas Heuer[0000−0002−6163−6649]

Institute of Computer Science, Rostock University, Albert-Einstein-Strasse 22,
18059 Rostock, Germany { dm, hme, ah }@informatik.uni-rostock.de

Abstract. Based on an analysis of typical automotive measurements
data as found in ASAM MDF files, we derive requirements managing
these data in a database system and create a mapping to a relational
database structure. The performance of a parallel relational database so-
lution is compared with a Python-based direct access and querying time-
series in Python and with big data frameworks such as Apache Spark in
different scenarios. A hybrid approach using some object-relational fea-
tures of PostgreSQL performs best in most cases.

Keywords: automotive data · time-series data · time merge · relational
database systems · ASAM MDF files

1 Motivation and Problem Specification

In the automotive industry, due to the continuous growth of collected sensor
data, traditional hardware and software setups come to their limits. Within a
joint project with an industrial partner, we developed and evaluated database
oriented solutions to offer scalable automotive analysis.

The basis for this project is the Measurement Data Format (MDF).
MDF is a binary file format that has been originally developed for automotive
measurement and analysis in the 1990’s. It has been officially standardized with
version 4.0 (MDF4) by the Association for Standardization of Automation and
Measuring Systems (ASAM) in 2009 and is even today the standard for storing
and reading automotive sensor data in industrial usage [1]. While MDF4 files do
not have any restriction on its actual size, analyzing a set of large or even many
moderate sized files can become hardware demanding for local setups. Neglecting
possible main memory shortages on long measurements, the disk storage problem
might be worked around using network drives. Due to unfiltered data communi-
cation, this approach has shown to perform poorly even on comparatively small
amounts of data.

In order to overcome these data size limitations, we started a cooperation
project with an industrial partner and examined solutions that are based on
database support with Python front ends using a conventional vertical archi-
tecture [7]. The main goal of this project was to survey a variety of database

? Copyright c©2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

2 Dennis Marten, Holger Meyer, Andreas Heuer

systems on automotive analysis for industrial usage using a variety of different
settings. Hereby, two groups of systems have been taken into consideration:

– (Parallel) relational database systems and
– Apache Spark with either NoSQL database systems or HDFS as data sources.

Besides the factor of scalability, relational database approaches generally promise
several additional advantages, like fast selective queries via index structures,
physical and logical optimization, data security aspects, as well as easy inte-
gration in current IT-setups. On the other hand, Apache Spark has shown to
be a promising parallelization framework for big data applications. Both groups
should have been evaluated using three given methods of frequently used basic
automotive analysis tasks, while varying between three different storage and
computation schemes:

1. storing data locally or on a cluster setup in order to allow analysts using the
same API for different purposes,

2. storing converted floating-point data or raw fixed-point data with the re-
spective conversion rules and parameters for online conversion, and

3. pushing different sub-methods into the database system (arithmetic oper-
ations and time merges, i.e. time series interpolation) in order to decrease
communication costs and the need of resource demanding local computa-
tions.

The three tasks of automotive analysis we evaluated can be categorized
into two groups:

– The first, more data intensive group, is selecting time series (”channels”) of a
number of files (measurements). All channels of one measurement are inter-
polated with respect to one of the time axes, so all channels ultimately share
one time axis, allowing for pointwise comparison or calculation. The inter-
polated data is either visualized, manipulated (for instance using arithmetic
operations) or analyzed, e.g. finding time intervals where channel values are
in certain ranges.

– The second group can be refered to as meta-information queries: the goal is
to find measurements under constraints, like a concrete date of recording or
some specific time axis information.

Due to space limitations, we would like to refer to an extended technical report
[7] for a more detailed presentation of the problem specification and a State of
the Art analysis of time series management in database systems.

In the following section, we give a brief overview of the course of the presented
project.

2 Course of Project

We started our investigation focusing on relational database systems, as these
seemed to be best suited for (1) the comparatively small amount of test data

Database support for automotive analysis 3

name time values

A 0 0.2

A 1 0.4

A 2 0.6

B 0.5 6.4

B 1.5 5.4

Exemplary Relation

row store

... A 0 0.2 A 1 0.4 A ...

column store

... A A A B B 0 1 ...

Simplified Internal Storage Scheme

Fig. 1. 1NF relational scheme.

name time[] values[]

A {0,1,2} {0.2,0.4,0.6}

B {0.5,1.5} {6.4,5.4}

row store with arrays

... A 0 1 2 0.2 0.4 0.6 ...

Exemplary Relation

Simplified Internal Storage Scheme

Fig. 2. Object-relational scheme.

(around 40 GB) that was available at the start of the project and (2) the eval-
uation of quite selective algorithms.

After evaluating first drafts of database schemas, we found that providing
a schema that enables systems to transparently apply compression techniques
is a key factor for our automotive scenario. Therefore, we distinguished three
different setups:

– row stores,
– column stores,
– and row stores that allow the use of array data types (such as object-

relational database systems).

Since automotive measurement data are heavily compressible, especially in the
context of run length encoding (RLE), column stores for first normal form (1NF)
relations or row stores with array data types (object-relational scheme) perform
best (see Figures 1 and 2 for exemplary relations in the three different setups).
With this differentiation, we developed four different relational schemas in
order to satisfy the requirement of either storing raw data (bit varying) and
its conversion rules, or converted floating point data (double precision), while
enabling sequential data storage and therefore transparent run-length encoding.
As an example, the (ER) schema using arrays in a row store with floating point
storage is depicted in Figure 2.

As requested by our industrial partner, we implemented the adjustment of
MDF data and the subsequent import into database systems in Python. For this,
we needed to evaluate different packages for reading MDF-files and database
communication.

For the three automotive analysis tasks we have implemented several database
supported approaches. We took special focus on evaluating the pushdown of as
many operations as possible into database systems as we have discussed in our
recent work on SQL-based scientific computing [6,5,4,3]. We compared pure SQL
implementations and UDF-based ones.

4 Dennis Marten, Holger Meyer, Andreas Heuer

file timeseries

fidname

start-
time

cid

name

[1,1]

v[]

channelgroup

gid

stores
[1,1][1,1][1,N]

com-
ment

device

name

measured by

[1,N]

stores
[1,N]

did

t[] grid

channel_dict
ref.
by

[1,1][0,1]

Fig. 3. Entity relationship model of the floating point schema for database systems
that support arrays. Dashed borders in combination with arrows describe weak entity
relationships.

After using RDBMSs, we evaluated Apache Spark with different types
of data storages including the use of CSV- and Parquet-files in HDFS and re-
questing data from (parallel) RDBMSs and NoSQL-systems using (array-based)
schemas similar to the ones for row stores with array support.

As a starting point, we reviewed different libraries for storing and analyzing
timeseries in Apache Spark. Here, we have found that these have not been suf-
ficient for automotive data [2]. Therefore, new implementations based on RDDs
and DataFrames had to be developed and evaluated.

3 Results and Conclusions

We have found several noteworthy results that we can only summarize in this
short paper. A more detailed description of all the results can be found in [7].

As a first conclusion, importing complete datasets of measurements into re-
lational database systems via Python is ineffective. As the heavily compressed
sensor data is decompressed in order to adjust its structure to the internal rep-
resentation of the respective database system, the amount of data that is com-
municated is needlessly high. Solutions to this problem are either transforming
sensor data in its actual compressed form before the communication process or
fully integrating the import (if possible) into the database system as a UDF.

Regarding relational database schemas, we have found that row stores sup-
porting array datatypes performed best. Here, he main reasons are superior
compression and faster selections as relations contain so much lesser tuples, that
even data selections via B-tree index structures become significantly faster. On
the other hand, row stores that have to work on strictly first normal form rela-
tions are unusable for these kinds of operations as relation sizes inflate rapidly.

Evaluating the three aforementioned automotive methods has shown that
the pushdown of interpolation (only applicable with UDFs) and arithmetic op-
erations, as well as finding intervals under constraints are very effective in this
scenario. In comparison to Python implementations on SSD drives for local cal-
culation or using network drives for cluster computing, all of the three methods
could experience a significant speed up when supported by (parallel) relational

Database support for automotive analysis 5

database systems. Especially, inter-measurement queries for metainformation
performed up to nearly 500 times faster, due to the very low communication
cost and the selectivity of the problem.

The most promising relational database systems we have tested are Post-
greSQL (local) and its parallel branch Postgres-XL (cluster setups). Besides
superior performance, both systems run under BSD-like licenses and support a
wide range of useful functionalities, like index structures, UDFs and array data
types with transparent run length encoding. However, due to a relatively small
amount of test data (40 GB) and fairly light-weight analysis, Postgres-XL could
not benefit from its parallel computation capabilities, ultimately leading to a
reduction of relative performance benefits obtained by database support in com-
parison to the local setup. Similarly, the initial overhead of Apache Spark has
shown to be to overwhelming for the data sizes we evaluated, making a com-
parison to the relational systems unfair. Despite this, the most promising data
storage for Apache Spark has shown to be Parquet files in HDFS.

As this project has only been meant as an initial survey of possible database
support for automotive applications, there are many ways to continue the re-
search, like evaluating larger data sets or more complex methods like pattern
recognition (e.g., peak detection). Nonetheless, this project has shown that scal-
able solutions for automotive inter-measurement analysis can be done efficiently
using relational database systems.

References

1. Association for Standardization of Automation and Measuring Systems: ASAM
MDF (2019), https://www.asam.net/standards/detail/mdf

2. Lutsch, A.: Effiziente Datenvorbereitung für Analysen im Automotive-Bereich.
Bachelor Thesis, Rostock University (2019), http://eprints.dbis.informatik.

uni-rostock.de/989/
3. Marten, D., Heuer, A.: A framework for self-managing database support

and parallel computing for assistive systems. In: Proceedings of the 8th
ACM International Conference on PErvasive Technologies Related to Assis-
tive Environments, PETRA 2015, Corfu, Greece, July 1-3, 2015. pp. 25:1–
25:4 (2015). https://doi.org/10.1145/2769493.2769526, https://doi.org/10.1145/
2769493.2769526

4. Marten, D., Heuer, A.: Machine Learning on Large Databases: Transforming Hidden
Markov Models to SQL Statements. Open Journal of Databases (OJDB) 4(1), 22–42
(2017), https://www.ronpub.com/ojdb/OJDB_2017v4i1n02_Marten.html

5. Marten, D., Meyer, H., Dietrich, D., Heuer, A.: Sparse and Dense Linear Algebra
for Machine Learning on Parallel-RDBMS Using SQL. OJBD 5(1), 1–34 (2019),
https://www.ronpub.com/ojbd/OJBD_2019v5i1n01_Marten.html

6. Marten, D., Meyer, H., Heuer, A.: Calculating Fourier transforms in SQL. In: Ad-
vances in Databases and Information Systems - 23nd European Conference, ADBIS
2019, Bled, Slovenia, September 8-11, 2019, Proceedings (2019)

7. Marten, D., Meyer, H., Heuer, A.: Database support for automotive analysis.
Technical Report. Chair of Database and Information Systems, Rostock Uni-
versity, Rostock, Germany (September 2019), http://eprints.dbis.informatik.
uni-rostock.de/995/

https://www.asam.net/standards/detail/mdf
http://eprints.dbis.informatik.uni-rostock.de/989/
http://eprints.dbis.informatik.uni-rostock.de/989/
https://doi.org/10.1145/2769493.2769526
https://doi.org/10.1145/2769493.2769526
https://doi.org/10.1145/2769493.2769526
https://www.ronpub.com/ojdb/OJDB_2017v4i1n02_Marten.html
https://www.ronpub.com/ojbd/OJBD_2019v5i1n01_Marten.html
http://eprints.dbis.informatik.uni-rostock.de/995/
http://eprints.dbis.informatik.uni-rostock.de/995/

	Database support for automotive analysis

