

Combining Provenance Management and Schema Evolution

Problem

- Research data management: tracking and archiving of data collected in scientific projects, experiments or observations
- Goal: Traceability, reconstructibility and replicability of the path from data collection to publication

Calculation of a minimal part of the database (minimal sub-database)

- Different constraints for the sub-database to be determined:
- Number of tuples of the original relation remains unchanged.
- The sub-database can be mapped homomorphically to the original database.
- The sub-database is an intensional description of the original database.
- Question: Which additional information is required to be able to reconstruct the minimal part of the database if the result and the evaluation query Q are both archived?
- Idea: Calculation of an inverse query Q_{prov} to determine the minimal sub-database \Rightarrow Type of inverse depending on the additional information noted

Unification of Provenance and Evolution

- Goal: Evaluation of provenance queries with changing data and schemas
- Idea: Combination of provenance with schema and data evolution
- ullet Wanted: New minimal sub-database to be archived J^*
- \Rightarrow Calculation of a new query $Q'(J(S_3))$ from the old query $Q(I(S_1))$

Provenance Management and Schema Evolution:

- ullet Schemas: S_1 , S_2 and S_3
- \bullet Minimal sub-databases: $I^* \subseteq I$ and $J^* \subseteq J$
- Input for Q_{prov} : $K^* \subseteq K$
- Query: Q
- Schema evolution: \mathcal{E}
- Provenance Query: Q_{prov}

Data Provenance Qprov

- Information order: where ≤ why ≤ how
- Provenance types and answers:

Provenance type	Answer	
where	tuple or table name	
why	(minimal) witness base	
how	provenance polynoms	
why not	provenance games	

CHASE Inverse

- CHASE: Incorporating dependencies \star in an object \bigcirc , i.e. chase $_{\star}(\bigcirc) = \bigcirc$
- CHASE&BACKCHASE:

- Exact CHASE-inverse: Reconstructs the complete original database
- Classical CHASE-inverse: Returns a result equivalent to the original database
- Tuple preserving relaxed CHASE-inverse: Preserves the number of tuples
- ullet Result equivalent CHASE-inverse: ${\sf chase}_{\mathcal{M}}(I) = {\sf chase}_{\mathcal{M}}(I^*)$
- Reduction:

result equivalent \leq relaxed \leq tp-relaxed \leq classical \leq exact

Conditions for the existence of CHASE inverse:

CHASE inverse	sufficient condition	necessary condition
Exact	-	$I^* = I$
Classical	Exact CHASE-inverse	$I^* \equiv I$
Tp-relaxed	Classical CHASE-inverse	$\mid I^* \preceq I, \mid I^* \mid = \mid I \mid \mid$
Relaxed	Tp-relaxed CHASE inverse	$I^* \preceq I$
Result equivalent	Relaxed CHASE-inverse	$I^* \leftrightarrow_{\mathcal{M}} I$

Query Q

- CHASE algorithm for evaluation of queries
- \bullet Approach: Description of the query Q as extended S-T TGDs and EGDs
- \Rightarrow Calculation of a CHASE inverse Q_{prod} to reconstruct a minimal sub-database I^*

Schema Evolution \mathcal{E}

- CHASE algorithm for schema evolution
- \bullet Approach: Description of the schema evolution ${\mathcal E}$ as S-T TGDs and EGDs
- \Rightarrow Calculation of an inverse \mathcal{E}^{-1} to reconstruct the old minimal sub-database I^*