
c© 2021 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Databases (OJDB)
Volume X, Issue X, 2021

http://www.ronpub.com/ojdb
ISSN 2199-3459

Provenance Tools
Rocco Flach, Maximilian Lamster, Chris Röhrs, Nic Scharlau, Tanja Auge

University of Rostock, 18051 Rostock, Germany,
{rocco.flach, maximilian.lamster, chris.roehrs, nic.scharlau, tanja.auge}@uni-rostock.de

ABSTRACT

The importance of provenance has arose for all kinds of sciences over the recent years. During research on data
provenance, several tools have been developed to use provenance in a practical way. We chose seven of those tools
and exhaustingly tested five of them: Trio, ORCHESTRA, Perm, GProM, and ProvSQL. In this article, we first
introduce the basics of data provenance, especially where-, why-, and how-provenance. After that, we present the
results of our tool tests.
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1 Introduction

Provenance in fact isn’t a commonly used term but
its popularity is increasing drastically. It’s a concept
used almost everywhere in scientifical research, even
though it is not called provenance but instead “quality”,
“reconstruction”, “trust”, or “understandability”.

The first appearance of provenance for most of us
have been the experiments we made in lessons of
physics or chemistry. To clarify, provenance is not
the experiment itself but the documentation behind it:
what was used, what were the observations, how long
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did the process take and what happened at which time?
A chemical experiment for example always needs a
documentation of tools, chemicals, a drawing of the
experimental setup, the exact documentation of the
execution, observations, measurements and sources if
used. The last section of each documentation is the
interpretation and evaluation of the experiment which
increases in quality, understandability, reconstruction
and trust if detailed documentation or provenance is
provided. It is no surprise you wanna keep the
provenance of your research as detailed as possible in
order to not only justify your results but to ensure the
use cases of provenance.

Provenance in data science can be explained similarly
with the addition that each provenance item uses
additional storage space. If you have a massive
calculation going on thats consulting a database in a
dimension you are not able to deliver in any attachment
and is way to big to store externally for the necessary
amount of time you want to make sure that you only store
or provide those database entries that really went into the
calculation or were crucial for the output.

Data provenance is a term used for provenance that
is collected or produced in information systems with a
granularity of single data items. This makes it easy not
only to save but to track down crucial data items that
have been used. Even though provenance may not be
a popular term itself one may ask in what extent the
concept got adapted into software that is available to the
public. In the following we want to present a variety
of tools implementing data provenance in different ways
including one special tool that uses the concept of
provenance to increase the performance of an algorithm
rather than increasing quality or else.

1.1 Selection criteria

Our goal is to summarize the development of data
provenance tools from the last decades. The selection is
based on the survey “A systematic review of provenance
systems” by Pérez et al. which already compares a
range of tools [PRS18]. The survey is focusing on the
literature. In addition we want to test the selected tools
ourselves. There are two main criteria. On the one hand
the program should work data oriented. On the other
hand the granularity has to be at least on tuple level. Thus
we can ensure the ability to assign the tools to the how-,
why- and where-provenance or lineage, respectively. It
is important for us that we can understand how the tools
are working. Additionally our readers should be able to
test and use the tools themselves. Hence they should be
free and open source.

Based on the results of [PRS18] we have chosen seven
tools in total. The chosen tools are Trio, ORCHESTRA,

Perm, GProM, ProvSQL, Tioga/Tioga-2 and ProvC&B.
We picked Trio because it is based on data lineage, and
it is the oldest tool we tested. ORCHESTRA is the first
tool which introduced the how-provenance. Perm was
chosen because it uses annotation propagation and query
rewriting. It is also the predecessor of GProM. GProM is
interesting because of three reasons. First it realizes an
approach to generate provenance game graphs. Second
it’s only a middleware and not a distinguished tool and
third it is the successor of Perm. ProvSQL is the latest
tool we decided for testing, and it uses semirings to
calculate the provenance. The order in which these tools
are discussed is based on their release date shown in
Figure 1.

Figure 1: Overview about every tool we decided to
test in release order

1.2 Test database and queries

Database We introduce a sample database of a
fictional university. It contains five tables: STUDENTS
(Table 12) contains eight records of students with
first and last name, student id and study course.
COURSES (Table 13) attaches a number to each course.
LECTURERS (Table 14) assigns each course one or more
lecturers. PARTICIPANTS (Table 15) tells us which
student takes which course. GRADES (Table 16) shows
which grades a student has got. Each row refers to a
course and a semester. The full database is located in the
appendix on page 23.

Queries We define four queries using the given tables
to test the tools. Query 1 returns a list of all study
courses which the students are enrolled in. This query
is used to test duplicate elimination. Query 2 lists the
students that listen to the lecture 005. Joins are used very
often in relational database systems, so we want to test
them too. Query 3 is a variation of the previous query.
Details about this query will be discussed below. Query
4 gives a overview of all grades that the university has
given. Aggregation and groupings are used widely in
data analyses. These four queries cover most operations
of the relational algebra.

SELECT s.firstname, l.fullname
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FROM students s, participants p,
lecturers l

WHERE s.student_id = p.student_id
AND p.course_nr = l.course_nr;

Command 1: Query 3

Let us take Query 3 as example. It is written in SQL in
Command 1. The corresponding result is listed in Table
1. We can take which lecturers teach which students
from the result table. Query 2 and this query have one
important difference: A projection is evaluated only for
columns from STUDENTS and LECTURERS. We want
to know whether the tool does output the tuple from
PARTICIPANTS which is used for both joins or not. Then
we know whether where-provenance was applied or not.
On the right side of the table there are the answers to
the how-, why- and where-provenance plus data lineage
displayed. The how-provenance shows the tuple IDs
connected through a multiplication with the ⊗-symbol.
This represents a join operation. The why-provenance
shows the same tuple IDs like the previous example but
we cannot see how they were processed. All tuples that
we need to reproduce are collected in a set called witness.
There is only one witness consisting of the three tuples.
Therefore the outer set called witness base has one
element. The where-provenance only shows the relation
names of the projected attributes. Since participants
is not requested in the select clause this relation is
omitted. The data lineage is the predecessor of the data
provenance. It lists us all tuples that were involved in
generating a specific row of the result. In section 2 we
explain in detail how the different provenance levels are
working. All queries in SQL and the resulting tables can
be reviewed in the appendix, beginning on page 25.

1.3 Structure of this paper

This paper is divided into four further sections. Section
2 deals with the basics of provenance. This includes
a general definition of provenance in subsection 2.1,
possible types of provenance in 2.2 and their respecting
applications in 2.3. Subsection 2.4 then goes further
into detail regarding data provenance. More detailed
descriptions of the questions where (see 2.4.1), why
(2.4.3), how (2.4.4) and why-not (2.4.5) are provided.

Section 3 then presents tools that are able to process
provenance information. Each individual tool is first
introduced, their ability to handle provenance and
associated literature is discussed, observations that have
been made for each tool are presented in detail and a
summary then concludes each tool test. Tools covered in
this paper are GProM (see 3.4), ORCHESTRA (3.2),
Perm (3.3), ProvC&B (3.7), ProvSQL (3.5), Tioga
(3.6) and Trio (3.1).

In section 4 we want to compare the tools with
consideration of benchmark queries introduced in
appendix A.2, the ability to handle how-, why-, and
where-provenance, the current developement status and
their license.

Section 4 gives a final summary of the results and
findings that have emerged from this paper.

2 Provenance

The whole section about provenance is explained based
on [HDB17]. Additional sources used are cited in their
corresponding text passages.

2.1 Definition

“Provenance generally refers to any
information that describes the production
process of an end product, which can be
anything from a piece of data to a physical
object.” [HDB17].

This definition describes the concept of provenance
really well but far too general. In order to be able to
process collected provenance information and thus cover
specific use cases, some restrictions have to be made.
These restrictions result in different types of provenance
that are presented in the following subsection 2.2.

2.2 Types of provenance

This subsection covers the fundamentals of the four
different types of provenance. These types are called
Provenance meta-data, Information system provenance,
Workflow provenance, and Data provenance. Figure
2 provides a hierarchy to additionally clarify that
Provenance meta-data is the most general type and that
each overlying type is the result of further restriction of
the underlying one. Data provenance therefore is the
most specific type of provenance covered in this article.

Figure 2: Provenance hierarchy based on [HDB17]
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firstname fullname how why where lineage
R1 Donald Lecturer A S1 ⊗ P1 ⊗ L1.2

{
{S1, P1, L1.2}

}
STUDENTS,
LECTURERS

S1, P1, L1.2

R2 Donald Professor A S1 ⊗ P1 ⊗ L1.1

{
{S1, P1, L1.1}

}
STUDENTS,
LECTURERS

S1, P1, L1.1

R3 Sarah Lecturer A S2 ⊗ P2 ⊗ L1.2

{
{S2, P2, L1.2}

}
STUDENTS,
LECTURERS

S2, P2, L1.2

... ... ... ... ... ...

Table 1: Result of Query 3 (first 3 rows) with Provenance

Provenance meta-data Being the most general type,
Provenance meta-data includes any type of meta-data
referring to a production process. It can be applied to any
kind of production process and allows various options for
modelling and implementation of respecting solutions
for provenance management without any restrictions
and, more importantly, without disclosing internals.
The main difference between other meta-data and
Provenance meta-data is the intended application.

Information system provenance Restricting
Provenance meta-data to production processes that
produce digital data inside an information system results
in Information system provenance. An information
system in that context is a system that produces,
collects, distributes, or processes information in the
form of digital data. In order to limit fitting production
processes, we further classify Information system
provenance as Provenance meta-data that is being
computed inside information systems via input, output,
and parameters, while internal processes stay hidden or
unknown.

Workflow provenance Workflow provenance emerges
out of further restriction of Information system
provenance to production processes that can be
represented as a workflow. A workflow can be
understood as a graph that consists of multiple nodes and
edges. A node stands for a module that is associated with
input, output, and parameters and an edge represents
a data or control flow between previous mentioned
nodes. This kind of representation allows a simple
way to visualize different granularities of provenance
information and also simplifies instrumentation.

Data provenance Instead of onward restriction of the
production processes, we now decrease the granularity
of provenance information to single data items to reach
Data provenance. In comparison to other provenance
types, Data provenance allows to track each and every
single data item in a whole production process. It is

often applied on structured data models – e.g. declarative
query languages – to exploit such structure or semantics.
This also allows easier instrumentation for all kinds of
possible use cases and applications.

Main applications of provenance are covered in
section 2.3 and Data provenance will be further
specified in section 2.4, also including important
questions like where, why, how and why-not.

2.3 Applications of provenance

This section shall provide some basic information about
the three main use cases of provenance in order to
motivate the usefulness of provenance management.
Each use case will be further divided into subtypes
by classifying provenance authors and provenance
consumers as this will help to cover a wider range of
applications.

Understandibility The first use case of provenance
is understandability. Provenance information is used
to present results and necessary application steps to a
specific audience. Storing information about why a step
was performed is optional here.

Collaboration describes understandibility within a
group of experts who work together on a project. This
group of experts therefore is provenance creator as well
as provenance consumer. In this scenario it is necessary
to record performed actions and make them available to
other users in a comprehensible and understandable way.
Collaboration can either be performed synchronous or
asynchronous. Synchronous collaboration describes the
immediate visibility of changes in a system, including
the provision of the resulting provenance information.
Asynchronous collaboration describes the collection
of such information without immediate change and
provision. Asynchronous solutions often update at
certain time intervals and include a list of changes that
accumulated since the last update was executed.

The choice of how to present provenance information
can make a significant contribution to understandibility
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if the provenance consumers belong to a wider crowd
and not to a group of experts. Presentation therefore
describes the visualization of provenance information
to support understandibility. The presentation and
exploration of such designed provenance information
can take place in corresponding applications and also
interactively to increase understandibility even more.

Provenance information can often be written or
consumed by a large number of different individuals or
is even implicitly available in corresponding data sets.
Such provenance information is referred to as attribution.
A simple example is authorship: provenance information
on relevant persons can be obtained just by examining
the sender of messages for example. This type of
provenance solely focusses on one single aspect and is
therefore easier to handle.

Reproducibility The second use case of provenance
information is reproducibility. The goal is to enable
any group of provenance consumers to obtain the same
end product using only the same materials and methods.
This use case describes the most natural approach on
provenance management.

Recall is a subtype of reproducibility that represents
the recording of every step taken. Recall usually has
the same provenance creator and consumer and also
stores unnecessary steps in order to be able to remember
everything.

Replication on the other hand describes the recording
of exclusively necessary steps and therefore answers not
only how but also why a step was performed. This type
of reproducibility is mostly used to enable provenance
consumption to a broader audience where unnecessary
steps are not of interest.

Quality Provenance information also allows to
increase the quality of an end product or to improve the
efficiency of a production process itself. Although this
type of use case is as important as the others mentioned
it is out of scope in this paper and also not part of the
implementation in tested tools.

Detour: FAIR principles Another motivation for
provenance management are specific guidelines also
known as the FAIR principles that were introduced in
[Wil+16] that aim to improve Findability, Accessibility,
Interoperability, and the Reuse of digital assets in order
to allow computer systems to better deal with the huge
amount of data that is created nowadays. To meet the
conditions of the FAIR principles and more specifically
the Reuse it is necessary to provide detailed provenance
information that is associated with the (meta)data.

Query type Question answered
where Where does the data come from?
why Why did we achieve this result?
how How was the result calculated?

why-not Why is a specific element missing?

Table 2: Provenance-Queries

2.4 Data provenance

Data provenance “captures the way in which data is
used, combined, and manipulated by [a data-intensive
system]” [DFG18]. While this definition is more
general, Buneman et al. specify data provenance as the
process of collecting information about the origins of
data, and also mention its movements between databases
in that context [BKT00]. As seen by comparing the
definitions, data provenance is a wide ranging term – so
is provenance itself – and will be covered in this section.
In general, the goal of data provenance is to answer four
questions that can be seen in Table 2. Hence, there are
four main types of data provenance: where-provenance,
why-provenance, how-provenance as well as why-not-
provenance. We also need to take a look at data lineage
which can be seen as the predecessor of why-provenance.

2.4.1 Where-provenance

We start by taking a look at where-provenance. Given
a query Q on a database instance I that leads to an
output relation Q(I) = {t1, t2, . . . , tn} consisting of
tuples ti (i ≥ 1). Intuitively, where-provenance has
to determine where the information in ti were copied
from, and therefore describes the relation between input
and output locations [CCT09]. There are many different
ways to describe the origin of such data. Buneman et
al. make use of location annotations: Given a relation
R consisting of tuples ti which, in itself, consist of
attributes Aj . The location of such an attribute can be
denoted as location(R, t, A) [BKT01] [CCT09]. When
asked where a value v of a tuple t occuring in Q(I) is
coming from, we want to know the location(R, t, v) and
therefore have to determine R. This can be done by using
annotations during the computation of a query result.

For example, take a look at Command 1. FIRSTNAME
is an attribute of STUDENTS whereas FULLNAME is
an attribute of LECTURERS. If each tuple gets a
unique provenance identifier before we perform a query,
we can carry these identifiers throughout the whole
computation process of that query and eventually derive
the locations from the result. If we follow the definition
of Buneman et al., we need to annotate the name of
the relation, the identifier of the tuple, and the name
of the attribute. Therefore, if we keep looking at our
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example query, the locations of the first row of the result
would be location(STUDENTS, S1, FIRSTNAME) as well
as location(LECTURERS, L1.2, FULLNAME).

However, there are alternative ways to denote and
calculate where-provenance. One of them is called
tuple-based where-provenance. Using this method,
we only need to track the tuple identifiers, assuming
that each identifier is unique. In our example, the
value “Donald” was copied from tuple S1 and the value
“Lecturer A” was copied from tuple L1.2. Hence, the
tuple-based where-provenance is {S1, L1.2}.

Another method is called the relation-based where-
provenance. Using this method, we only need to
store the relation names of according relations holding
the information. Since “Donald” was copied from
the relation STUDENTS and “Lecturer A” was copied
from the relation LECTURERS, the relation-based where-
provenance is {STUDENTS, LECTURERS}, as seen in
Table 1. Note that this information can also easily be
derived from the selection statement of the query itself.

If we take a look at the result of Command 15, seen
in Table 17, we can see that the relation-based where-
provenance of the first tuple is {LECTURERS} because
every information given in the result has its origin in
this relation; other relations are not necessary to produce
the output. Again, the provenance information can
easily be derived from the SELECT statement of the
query. The where-provenance of the first tuple in the
result of Command 16 (seen in Table 18), however,
is {STUDENTS, PARTICIPANTS} because part of the
information in the result were copied from STUDENTS,
some were copied from PARTICIPANTS. Again, this can
be derived by taking a closer look at the query itself.

2.4.2 Data lineage

Before we continue with why-provenance, we shall take
a look at data lineage.

The aim of data lineage is to track all tuples that
“contribute to” a query result [BKT00]. However, a
definition of that contribution is not as easy as it seems.
A common understanding is that a tuple contributes
of a result if its removal from the source database
would change the result. Another way to describe data
lineage is referred to as “using a simple proof-theoretic
definition” by Buneman et al. in [BKT00]. According to
them, “an input tuple contributes to an output tuple if it
is used in some minimal derivation of that tuple”.

If we take a look at Command 15 and its result, we
can see that the first tuple of the result exists because
of the information in both S3 and S7 since the value
“Computer Science” appears in both tuples, and both are
used to produce the output. Hence, the data lineage of
that tuple is S3, S7. However, if we remove either S3

or S7 from the input database, the output would still be
the same, because you only need one of these two tuples
to derive the information from. Therefore, S3 as well
as S7 are two alternative solutions for the data lineage
of the output tuple. Not only that, these two solutions
are also minimal but remain undiscovered. Fortunately,
why-provenance covers the problem of minimality by
introducing (minimal) witnesses.

2.4.3 Why-provenance

The goal behind why-provenance is to provide
information about the witnesses to a query on an
instance. The predecessor of why-provenance is
the data lineage which provides a subset of input
records that are needed to produce the output records.
However, a single output tuple can be witnessed by
multiple witnesses, which data lineage does not cover.
Hence, why-provenance has been defined to distinguish
between multiple witnesses [BKT01] [CCT09]: Let
I be a database instance, Q be a query over I , and t
be a tuple in Q(I). An instance I ′ ⊆ I is a witness
for t in respect to Q if t ∈ Q(I ′). It is notated as
Wit(Q, I, t) = {J ⊆ I | t ∈ Q(J)}. A set that
contains all witnesses for a given tuple t is called the
witness basis of t. This implies that any subinstance
of the database that is relevant for t is a witness for
t, including the data lineage as well as the whole
database. If the instance I is finite, so is Wit(Q, I, t),
however, this set could be exponentially large due to
witnesses that contain tuples not needed to produce t.
To conquer this problem, Cheney et al. define a minimal
witness basis consisting of minimal witnesses. A
minimal witness basis is a set MWhy(Q, I, t) = {J ∈
Why(Q, I, t) | J minimal in Why(Q, I, t)} [CCT09].

Please note that our notation of why-provenance
differs from the one Cheney et al. use. Intuitively, if two
input tuples t1 and t2 lead to the existence of an output
tuple t3, both t1 and t2 are witnesses for t3; {t1, t2} is
the corresponding witness set. Assuming there are no
other tuples that could witness t3, {{t1, t2}} would be
the witness basis of t3. If t3 could not be witnessed
without either t1 or t2, the witness basis would also be
minimal.

If we revisit the query in Command 1, the first
tuple is the result of a join between STUDENTS,
PARTICIPANTS, and LECTURERS. As seen previously,
“Donald” was derived from tuple S1, “Lecturer A” from
L1.2. Additionally, the tuple also relies on P1 from
the PARTICIPANTS relation because it was involved in
joining the three relations. Hence, {S1, P1, L1.2} is a
witness set of the tuple, and hence neither any subset of
the witness set nor any other combination of tuples could
witness the tuple, {{S1, P1, L1.2}} is also its minimal
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witness basis.
Let us also take a look at the query in Command

15 again. The why-provenance of the first output tuple
is {{S3}, {S7}}. This means that {S3} and {S7} are
two (minimal) witness bases for that tuple. The data
lineage on the other hand, is S3, S7 and lacks respect
to minimality, as been described.

Also, in some cases it is possible to derive the
exact where-provenance from the why-provenance by
unpacking and uniting the witness bases into a single
set of tuple identifiers. The why-provenance, again,
is {{S3}, {S7}}; if we put this information into a
single set, we recieve {S3, S7} which satifies both
the data lineage as well as the where-provenance
(assuming we know that S stands for STUDENTS).
However, this does not work for, e.g., the query in
Command 17: its first output tuple’s why-provenance is
{{S1, P1, L1.2}} which – unpacked – satisfies the data
lineage S1, P1, L1.2. If we try to derive the where-
provenance from that, we would conclude that it is
{STUDENTS, PARTICIPANTS, LECTURERS}, yet not a
single value of PARTICIPANTS is part of the output. The
actual where-provenance (STUDENTS and LECTURERS)
is included, though, but our derived result is not minimal.

2.4.4 How-provenance

As we see, why-provenance is superior to where-
provenance and covers it in respect to a potential loss
of minimality. However, why-provenance only gives
information about the necessity of a tuple but not about
the amount of its occurrences (or importance) in a result
computation. Hence, we need a way to measure how
often tuples contribute to a certain result. Fortunately,
how-provenance solves this problem by introducing
commutative semirings for provenance computation
as well as provenance polynomials for describing
results, again using annotations. Therefore, while why-
provenance can only describe why a certain result exists,
how-provenance can also describe how exactly is was
calculated.

Green and Tannen define some commutative
semirings that are useful for calculating how-provenance
[GT17]. For example, B({true, false},∨,∧,⊥,>) is
a commutative semiring for logical expressions and
set semantics in databases. N = (N,⊕,⊗, 0, 1) is a
semiring for bag semantics and counting derivations.
Another semiring is N[X] = (N[X],⊕,⊗, 0, 1) where
N[X] is the set of polynomials in indeterminates from
X and coefficients from N. It is used for provenance
polynomials and therefore most important for us.

As can be seen, there are two main operations needed
for how-provenance: ⊕, which is idempotent, and
⊗, which is commutative, following the definition of

commutative semirings. 0 is used as zero element, 1 is
used as identity element. The “⊕” element can be used
for duplication elemination, as in projections and unions,
and the “⊗” element can be used for joining elements,
as in joins, selections, intersections, and the cartesian
product.

For example, let a = {1, 2, 3} and b = {3, 4, 5} be
two tuples from different relations sharing a common
attribute 3. If these tuples get joined over 3 during a
join of their relations, the provenance polynomial of the
resulting tuple would be a ⊗ b. If both a and b would
be the result of a projection, the provenance polynomial
would be a⊕ b.

Consider our query in Command 1. The first tuple is
the result of a join between STUDENTS, PARTICIPANTS,
and LECTURERS. More precisely, this tuple exists
because of a join between tuples S1, P1 and L1.2, hence
the provenance polynomial is S1 ⊗ P1 ⊗ L1.2.

Technically, following Green and Tannen, the
polynomial for the whole result would be

(S1 ⊗ P1 ⊗ L1.2)⊗ 1

⊕ (S1 ⊗ P1 ⊗ L1.1)⊗ 1

⊕ (S2 ⊗ P2 ⊗ L1.2)⊗ 1

⊕ . . .

⊕ tN ⊗ 0,

where tN represents all possible combinations
of tuples from STUDENTS, PARTICICPANTS and
LECTURERS that do not satisfy – or witness – our query
result.

Earlier we saw that why-provenance overlaps where-
provenance. The same goes with how-provenance
and why-provenance, and therefore also with where-
provenance. Looking at Command 15, the first tuple
of its result (which again can be seen in Table 17)
has the how-provenance S3 ⊕ S7 since either S3 or
S7 are necessary to produce the output tuple (but not
both). Hence, {S3} as well as {S7} are witness sets for
that tuple; {{S3}, {S7}} therefore is the corresponding
witness basis. As we saw earlier, it is quite easy to
derive the data lineage and where-provenance from that
witness basis. Hence, how-provenance all information
that are necessary for why- and where-provenance as
well as data lineage: where � why � how.

2.4.5 Why-not-provenance

In contrast to provenance of existing results - presented
in why, how and where- there is also a provenance
for missing results which is summarized below under
the term why-not provenance. Since this type of
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provenance does not appear in the further course of
this work and especially not in the tested tools, it will
only be presented in the form of an overview based on
[HDB17] for further supplementation. In general the
why-not provenance provides explanations as to why
a data record that was expected in the result does not
appear in it. Given a 5-tuple {TR, Q,Q(D), D,C}
where TR = {tR1

, tR2
, ...} describes the (“conditional”)

missing tuples, Q = {q1, q2, ...} describes a set of
queries, D describes the source instance, Q(D) =
{q1(D), q2(D), ...} describes the results and C describes
constraints over the 4 previous mentioned parts we
diversify three main types of why-not provenance based
on their explanations.

Instance based explanations deliver a set of insert,
delete or update operations to existing tuples in D such
that TR ∈ Q(D). Well known algorithms and systems
that use this kind of explanations are Missing Answers,
Artemis or PGames (Provenance Games).

Query based explanations deliver query conditions
(join, select) included in Q that are responsible for
pruning expected tuples defined in TR. Examples of use
are NedExplain and TED.

Refinement based explanations change the input
setting and therefore delivers an alternative for Q named
Q′ and for TR named T ′

R such that T ′
R ∈ Q′(D).

Examples are TALOS, ConQuer and FlexIQ.

2.4.6 Types of answers

As diverse as provenance-queries can be so can be the
answers. Table 3 is showing an easily understandable
overview of the different types of answers.

Extensional answers originate from questions like
why, how and where and deliver tuples from the original
dataset that are responsible for the result.

Whenever original data needs to be kept private
intensional answers may be a possible solution. Instead
of providing tuples from the original dataset intensional
answers only provide a description of the dataset and
therefore keeping exact values anonymous.

Whenever a why-not question is answered we either
have a query- or modification-based answer. Query-
based answers deliver a set of selection predicates that
are responsible for an expected tuple to be missing in
the desired result. Modification-based answers on the
other hand can either suggest minimal changes to the
considered instance in form of delete-, insert- or update-
operations or even suggest minimal changes to the whole
input setting in order to deliver a desired result.

Answert type Result
extensional Tuples from the original data
intensional Description of the data
query-based Selection predicates

modification-based Suggestion for minimal change

Table 3: Provenance-Answers

3 Tool tests

3.1 Trio

What is Trio? Trio was first presented in 2004, is
based on PostgreSQL and implemented in Python 2.x.
It is Open Source Software and freely available on
the Stanford university website. Trio is based on
the uncertainty liniage databases model (ULDB-Model)
which extends the standard SQL relational model by
lineage and uncertainty [Ben+06]. The uncertainty
values are stored in an additional column. However,
the lineage generated by Trio is retained in a new table.
The lineage is handled similar to the how-provenance in
Section 2.4.4.

Trio uses its own language, named TrioQL. It supports
the definition of alternative values, called uncertain
records. Furthermore we can define trust values for
each attribute. These describe the probability for the
existance of the attribute. Internally Trio calls this
confidence. If you want to know the most probable result
Trio utilizes horizontal subqueries. Commands can be
executed through the browser interface TrioExplorer or
the command line interface TrioPlus. You can run SQL
scripts from files too. Trio realizes these concepts with
three types of tables: certain relations already known
from SQL, uncertain tables and uncertain tables with
confidences.

Literature & Provenance The literature says that Trio
is able to fulfil how-provenance. However, there is
a difference between the how-provenance (see Section
2.4.4) and lineage known in 2004 (see Section 2.4.2).
At this time lineage connects uncertain records with
other alternatives from which they were derived. In
Section 2.4.2, data lineage describes all tuples that are
considered to produce a given relation. As we can
see, Trio uses the data lineage definition from 2004.
Because of this, we call the old lineage trio lineage. It
is more informative then why-provenance but less then
how-provenance.
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provenance type result
how S1 ⊗ P1 ⊗ L1.1

trio lineage 〈S1, P1, L1.1〉
why {{S1, P1, L1.1}}

Table 4: Provenance differences between how, trio
lineage and why

Let us take a closer look at Query 3that lists which
student is taught by which lecturer. In Figure 3 we see
the trio lineage of one of the result tuples. Internally, the
lineage is automatically tracked in an additional table. It
is not necessary to explicitly write a command down.

Figure 3: Result of Query 3. Shows the trio lineage of
the first tuple “Donald” and “Professor A”

This Figure 3 shows the expected result of the Query 3.
Opening the lineage tab (blue arrow on the left of the
tuple) opens up a box. In the box there are all three
tables again with the relevant records for the resulting
tuple ("Donald", "Professor A"). In literature of Trio we
find the predicate lineage. With this you should be
able to get the same information in the tuple but in our
tests it produces only an error.

What we observe Trio was tested on Ubuntu 20.04
LTS with Python 2.7 and PostgreSQL 12.2. Trio can
handle joins very well and produces the expected results.
But we are not allowed to use the keyword JOIN in a
query.

Aggregations are denoted differently than usual. The
functions avg, count, max, min and sum can be used
by adding a “h”, “l” or “e”, e. g. havg, lcount or
emax. If we query a table without uncertainty then the
prefixes have no meaning and the normal aggregations
are executed. It is different if you use aggregation
functions on tables with uncertainty. Then we get results
for the highest, the lowest and the expected possibility,
respectively. However, we do not get any provenance for
those results if you use aggregation functions.

Trio differentiates three types of tables. The first type
is the certain table. These tables are displayed in blue.
To create one normal table in Trio we use standard SQL.

The second type of tables are green uncertain trio
tables. There we are allowed to make tuples with
alternative values. Trio displays the column name with
an additional star. To create an uncertain trio table
we only need to add the keyword UNCERTAIN when
creating the table. The following Command 2 shows
how:

CREATE TRIO TABLE lec (
l_id VARCHAR(10),
course_nr VARCHAR(3),
fullname VARCHAR(255),
UNCERTAIN(fullname)

);

Command 2: Definition of relation LEC with an
uncertain attribute fullname without confidence

As we can see in Figure 4, the column fullname in the
green table is now marked with a star. To add a tuple
into this trio table you add a single questionmark (?) at
the end of the command 3:

INSERT INTO lec
VALUES (

’L1.1’, 001, ’Professor A’
)?;
INSERT INTO lec
VALUES (

’L2’, 002,
[’Professor B’ | ’Professor C’]

)?;

Command 3: Inserting an record with an uncertain
property

If we want to include an alternative value we have to use
the vertical bar (|) between the alternative values and
have to put the values in square brackets ([]).

The third type of tables are the uncertain trio tables
with confidences. The tuples get a probability at the end.
In TrioExplorer these tables are displayed in orange. To
create an uncertain trio table with confidences you need
to add the keyword UNCERTAINwhen creating the table
and add WITH CONFIDENCES at the end like in this
command 4:

CREATE TRIO TABLE lec2 (
l_id VARCHAR(10),
course_nr VARCHAR(3),
fullname VARCHAR(255),
UNCERTAIN(fullname)

) WITH CONFIDENCES;

Command 4: Definition of relation LEC with an
uncertain attribute fullname with confidence

As we can see in Figure 4, the column fullname in the
orange table is now marked with a star. If we want to
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include an alternative value we again have to use the
vertical bar (|) between the alternative values and have
to put the values in square brackets ([]). Attention, here
we have to type the alternative values in a different way
than for the uncertain trio table without confidences. To
add the confidence value we add the probability value
after the associated parantheses. We demonstrate this in
Command 5.

INSERT INTO lec2
VALUES [

(’L1.1’, 001, ’Professor A’):1
];
INSERT INTO lec2
VALUES [

(’L2’, 002, ’Professor B’):0.7 |
(’L2’, 002, ’Professor C’):0.3

];

Command 5: Inserting an record with an uncertain
property

The usage of foreign keys and unique commands
are not supported. Moreover, for the insert into
command you are only allowed to insert one tuple per
command. Sadly distinct is not supported too. It
only prints the following error message:

can only concatenate tuple (not
"list") to tuple

Trio has his own user interface, the TrioExplorer,
shown in Figure 4. It opens in your browser and gives an
overview about every existing table. Also we can query
the result there. In the home tab we can view each table
individually by selecting the table of our choice and click
on View. Then we get a legend about the symbolic used
in TrioExplorer. At the bottom of the left column we
can see your command history. Here we can click on
the queries to copy them right into the query box. If we
want to store our result in an extra table we can create
such a table. It is simply created by adding the usual
SQL keywords CREATE TABLE.

CREATE TABLE result_query_3 AS
SELECT s.firstname, l.fullname
FROM students s, participants p, lec l
WHERE s.student_id = p.student_id
AND p.course_nr = l.course_nr;

Command 6: Creating a result table

The new table created by Command 6 has arrows to the
existing source tables. We can even connect uncertain
tables with certain tables. This is also shown in Figure 4.
It shows among others the new table RESULT_QUERY_3
which was created by Command 6.

If you want to experience Trio by yourself without
creating a new database, you can use the samples which

Figure 4: TrioExplorer: A schema overview in
Trio with the result table of query 3 with the
corresponding query

come with it. There is the sample of the crime solver
which is ideal for testing Trio yourself. In our virtual
machine there is this students example preconfigurated.
To execute scripts in Trio we go to the scripts tab and
load our file. The help tab gives you a little explanation
about all the tabs before.

Conclusion Trio has a very clear user interface with
the TrioExplorer. However, the user experience can be
clouded by missing implementations and complicated
documentations. There are no existing documentations
about TrioPlus. We couldn’t test the DELETE and
UPDATE command which are described in the TrioQL
documentation. It looks like they are not implemented
yet. Also Trio cannot work with every data type,
foreign keys and unique conditions we observed that
aggregations are supported when using horizontal
subqueries.

3.2 ORCHESTRA

What is ORCHESTRA? ORCHESTRA was
originally developed as a conductor between
biological databases. It should transfer data
between inhomogenous databases. To reach this
goal ORCHESTRA implements a peer-to-peer system.
To use this data it provides the implementation of
how-provenance on tuple granularity. This tool can
generate provenance graphs too. ORCHESTRA was
developed in 2005 in Java. The source code is publicly
available in the Google Code Archive1 and is licensed
under the Apache-2.0 license.

1https://code.google.com/archive/p/
penn-orchestra/
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Literature & Provenance ORCHESTRA, a tool
introduced by Green et al., is a tool that uses tuple-
generating dependencies for schema mappings [Gre+10].
It is a system for data transfer or data exchange and
was designed to exchange data between life sciences
databases. Its goal is to track provenance information
of exchanged data. To do that, it produces provenance
graphs with tuple nodes, mapping nodes, and edges
between them. Internally, ORCHESTRA is based on
provenance semirings, which makes it the first tool that
implemented how-provenance. It also has its own query
language ProQL to navigate through provenance graphs.

What we observe There are two versions of
ORCHESTRA in the Google Code Archive. We
tested version 0.1-SNAPSHOT on Debian 10 with
DB2 and Java 8 because we could not make version
0.2-SNAPSHOT work. Thus some of our results may
differ from the second version. First we had to resolve
some dependency issues by modifying the pom.xml.
Queries are written in Datalog and stored together with
the table definitions plus trust conditions in XML files.

Let us take our running example Query 3. For the
reason that mappings are stored as XML files we first
have to translate our query into Datalog. In the head
element we tell ORCHESTRA which attributes are used
in the projection. In the body element the tables are
listed that will be joined. We can replace the irrelevant
attributes with underscores. The finished configuration
snippet is listed in Command 7.

<mapping materialized="true" name="M3">
<head>

<atom>
STUDENTS.STUDENTSSCHEMA.
STUDENT_LECTURER(
FIRSTNAME, FULLNAME)

</atom>
</head>
<body>

<atom>
STUDENTS.STUDENTSSCHEMA.STUDENTS(
_, STUDENT_ID, _, FIRSTNAME, _)

</atom>
<atom>
STUDENTS.STUDENTSSCHEMA.PARTICIPANTS(
_, COURSE_NR, STUDENT_ID)

</atom>
<atom>
STUDENTS.STUDENTSSCHEMA.LECTURERS(
_, COURSE_NR, FULLNAME)

</atom>
</body>
</mapping>

Command 7: Example of a mapping in
ORCHESTRA

The result is listed in Table 5. As you can see, the
rows have been sorted by FIRSTNAME and then by
FULLNAME.

FIRSTNAME FULLNAME
Donald Lecturer A
Donald Professor A
Donald Professor B
Donald Professor C
Elisabeth Lecturer A
Elisabeth Lecturer B
Elisabeth Professor A
Elisabeth Professor B

...
...

Table 5: Result of Query 3 in ORCHESTRA (first 8
rows)

ORCHESTRA is capable of generate provenance
graphs. An example is displayed in Figure 5. First,
using the dropdowns on the right we select the peer and
the query. Then the result will be printed under the
dropdown menus. When selecting a row, the provenance
graph is drawn on the main area. The green box on
the left represent the result tuple ("Donald", "Professor
A"). It is connected to three yellow rhombuses which
stand for the mapping. Now we know we have three
possible alternatives to derive this result row. Each
mapping is connected to three blue boxes, containing
the original tuples from the base tables. These tables are
connected with a join. For instance, the top mapping uses
LECTURERS(L1.1, ...), PARTICIPANTS(P1,
...) and STUDENTS(S1, ...). We observe that
the student with the id 3 is used three times, once for
each mapping node. Since ORCHESTRA works with
Datalog an implicit duplicate elimination is performed.
With this information we can calculate the provenance
polynomial:

(S1⊗P1⊗L1.1)⊕ (S1⊗P20⊗L7)⊕ (S1⊗P24⊗L9).

The two ⊕ symbols say that we have three alternatives
which were combined via duplicate elimination. Each
part is a join of three tuples, denoted by⊗. You can even
rearrange the positions of the nodes by drag-and-drop.

When comparing with the official screenshots from
the project website the yellow "+" attracted our
attention. Figure 6 shows another provenance

2https://www.cis.upenn.edu/~zives/orchestra/
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Figure 5: Screenshot of the GUI showing the query
result with the corresponding provenance graph

Figure 6: Screenshot from the ORCHESTRA project
homepage2

Query 1 and Query 2 work as expected and produce
similar results. But if we change the selection criteria
then the tool produces result row that should not be there.
After testing other variations of our queries we assume
that selections only work properly if they are applied to
key attributes. Query 4 could not be realized because
ORCHESTRA does not support aggregations.

Conclusion ORCHESTRA is a tool for exchanging
data in peer-to-peer systems. It implements the why-
provenance on tuple granularity. Duplicate eliminations
are executed by default because ORCHESTRA uses
Datalog as query language. Joins are working but
aggregations are not. Provenance graphs belong to the
functionalities of ORCHESTRA. This tool comes with
its own GUI that can display them.

3.3 Perm

What is Perm? Perm stands for Provenance Extension
of the Relational Model and is a provenance management

system which supports provenance queries of different
types. It was implemented in 2009 as a modified
PostgreSQL server. Perm is based on version 8.3
and is licensed under the terms of the PostgreSQL
license. The source code is available at GitHub3. The
developers decided to extend the source code by a Perm
Module which comes with a Query Rewriter. It takes a
query written in SQL-PLE (SQL Provenance Language
Extension) and converts it in standard SQL internally
[Gla10]. When the command is executed the provenance
information is put in additional columns. Thus Perm can
make use of the optimizer of PostgreSQL. To calculate
the why-provenance the user adds the PROVENANCE
keyword straight after the SELECT keyword. Query
trees are used to solve the how-provenance. The
standalone Perm Browser client provides a simple-to-use
GUI. It can also display query trees.

Literature & Provenance Perm is able to process
how-, why-, where- and transformation provenance
[GA09]. It also introduced the query rewriter and
explains how it is embedded in the architecture of Perm.
The architecture is discussed later in this paragraph. The
query rewriter takes a query q as input and transforms
it to another query q+ that produces the same result as
q but generates provenance information for each row
in additional columns. The provenance types come
with different semantics and granularities to see in the
following table.

Provenance Type Semantics Granularity

where
C-CS Tuple
Where Attribute Value

why PI-CS Tuple
how Polynomials Tuple

Table 6: Provenance types supported by Perm with
their semantics and granualities, based on [GMA13],
p. 7

C-CS stands for Copy-Contribution-Semantics and PI-
CS stands for Perm-Influence-Contribution-Semantics.
Both semantics are based on data lineage. In Perm
however, the where-provenance of attribute values can
be found in the additional columns created by the query
rewriter. If we look into the result table we can see every
detail about the tuples.

The full architecture of Perm is shown in Figure
7. There we also see how this tool is embedded in
PostgreSQL. We see that the Perm Module takes the

3https://github.com/IITDBGroup/perm
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Figure 7: Perm Architecture [Gla10]

output from the PostgreSQL Rewriter and passes its
result to the optimizer of PostgreSQL.

What we observe We tested Perm successfully on
Ubuntu 18.04 LTS. All four test queries are working as
expected. An example of the input is shown in Figure 8.
In this paper we want to demonstrate Query 4 because
we think it produces the most interesting result.

To instruct Perm to calculate the provenance of a SQL
query we add the keyword PROVENANCE straight after
the SELECT keyword like in Command 8. Now Perm
will use the aforementioned Query Rewriter to calculate
the new query and executes it.

SELECT PROVENANCE
grade, count(*) AS c

FROM grades
WHERE course_nr = ’002’
GROUP BY grade
ORDER BY grade;

Command 8: Query 4 mit PROVENANCE

The output of the query is listed in Table 7. There
we can see that the row (1.3, 2) is listed twice. This
is caused by the two records in GRADES that were
grouped together to one row. Because Perm adds new
columns PostgreSQL now thinks that these are two
different tuples and therefore the duplicate elimination
does not find a duplicate anymore. The column names
are composed of the string prov, the name of the
schema, the name of the source table and the name of
the attribute, joined with underscores. Here we stored
our tables in the default schema public. We observed
that Perm repeated the underscores in our column names.

grade c (1) (2) (3) (4) (5)
1.0 1 G8 002 4 WS 15/16 1.0
1.3 2 G6 002 2 WS 14/15 1.3
1.3 2 G9 002 5 WS 15/16 1.3
2.0 1 G10 002 6 WS 15/16 2.0
2.3 1 G7 002 3 WS 14/15 2.3
3.3 1 G11 002 7 WS 15/16 3.3
3.7 1 G5 002 1 WS 15/16 3.7

(1) prov_public_grades_g__id
(2) prov_public_grades_course__nr
(3) prov_public_grades_student__id
(4) prov_public_grades_semester
(5) prov_public_grades_grade

Table 7: Result of Command 8 with Provenance in
Perm

Let us show another keyword from the SQL-PLE
syntax: BASERELATION. It causes a subquery to be
treated like a relation from the database when retrieveing
provenance data. The keyword is placed between the
subquery and the corresponding alias.

In Command 9 we put Query 4 as inner query and sum
up the number of grades that were given to students in
course 002. The corresponding result is printed in Table
8. Again we need the keyword PROVENANCE.

SELECT PROVENANCE sum(gcount) FROM (
SELECT grade, count(*) AS gcount
FROM grades
WHERE course_nr = ’002’
GROUP BY grade
ORDER BY grade

) BASERELATION query4;

Command 9: Query 4 with BASERELATION

sum prov_query4_grade prov_query4_gcount
7 1.0 1
7 1.3 2
7 2.0 1
7 2.3 1
7 3.3 1
7 3.7 1

Table 8: Result table of Command 9

The expected result without the special keywords should
be the single value 7. However, it has six rows now. But
we can not see all column names of GRADES. Instead
the attributes GRADE and GCOUNT are displayed. The
subquery which is marked as base relation is not
an actual table from our database. Hence Perm is
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composing the attribute name using the name of the
subquery between prov and the name of the projected
attribute.

Note the position of the PROVENANCE keyword. If
we place the keyword to the inner query rather than the
outer query, then the result would be a single 9 because
we would aggregate Table 7.

Perm has its own GUI named Perm Browser. A
screenshot of the Perm Browser is in Figure 8. In the
top left corner are some logos from the research group.
Under the pictures is the Query textbox. There we type
our query in SQL-PLE. If the PROVENANCE keyword is
used in the Query textbox, the Provenance Query textbox
below shows the rewritten query. Additional options are
available below the second textbox. Back to the top;
right of the logos there are two buttons and a dropdown
menu. In the dropdown menu our history is stored. The
“run” button starts the execution and the “show Rewrite”
button fills the Provenance Query textbox. On the right
hand side Perm presents the query algebra tree and the
provenance query algebra tree with some buttons for
zooming. At the bottom is the result table with the
provenance attributes in an alternating color scheme.

Figure 8: Screenshot of the Perm Browser

Conclusion Perm is a modified PostgreSQL server.
It extends the SQL syntax in order to capture the
provenance. The Perm Module is embedded in
the architecture of PostgreSQL and contains a Query
Rewriter. Provenance annotations are generated in
additional rows when executing a command with the
PROVENANCE keyword. The Perm Browser combines
some of the functionality of Perm. You can view the
rewritten query and the result as well as query trees.

3.4 GProM

What is GProM? GProM is a abbreviation for
Generic Provenance Middleware and is the successor of

Perm. It is, as the name suggests, a middleware which
supports multiple database management systems like
PostgreSQL. The source code is available at GitHub4 and
licensed under the Apache-2.0 license.

Figure 9: GProM Architecture [Ara+18]

Literature & Provenance According to [Ara+14],
GProM uses annotation and query rewrite techniques
for “computing, querying, storing, and translating the
provenance of SQL queries, updates, transactions, and
across transactions”. It uses a relational database as
backend. MonetDB, Oracle, PostgreSQL and SQLite
are available backend systems. The architecture of
GProM is illustrated in Figure 9. You can see the
different steps from frontend to backend. Using the
command-line interface or JDBC, for example, you can
connect to GProM. The tool takes care of rewriting and
optimizing queries. Then it will generate the code for
the specific database backend and finally connects to
it. Similar to other provenance tools, GProM uses a
relational encoding to process provenance annotations.
Incoming statements are translated into algebra graph
models based on relational algebra graphs.

GProM is able to compute provenance of concurrent
transactions as long as the underlying DBMS saves an
audit log and features a time travel functionality. An
audit log saves SQL statements, including an identifier
and a timestamp. The time travel functionality stores
snapshots of a relation so they can be restored if
requested. According to the authors, GProM is the
only provenance tool able to compute the provenance of
concurrent transactions [Ara+18].

Originally, GProM was developed to compute the
provenance of SQL queries [Lee+17], but has since been
extended to also support Datalog queries. By providing

4https://github.com/IITDBGroup/gprom
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a why or why-not question and a datalog query as input,
GProM can compute the corresponding provenance of
the result. This is done by unifying why- and why-
not-provenance using provenance games. To ask why a
certain tuple is not present in the output is to ask why this
tuple is present in the complement of a result. GProM
also includes query optimization based on heuristics and
cost-based rules and is designed for extensibility: other
provenance notations and models can be added whenever
needed.

What we observe We used Ubuntu 20.4 LTS for our
tests with GProM. Because of the architecture we needed
a frontend and a backend. As backend we decided to use
SQLite because it is easy to install. As for the frontend
we used standard SQL for the queries and Datalog for
the provenance game graphs.

All four test queries produce similar or even identical
results to Perm. For comparison to other tools we already
described Query 3 in detail (see Section 1.2). In short,
we want to know which lecturer teaches which student.

(1) (2) (3) (4) (5) ...
Donald Lecturer A S1 1 Moore ...
Donald Professor A S1 1 Moore ...
Donald Professor C S1 1 Moore ...
Donald Professor A S1 1 Moore ...
Donald Professor A S1 1 Moore ...
Sarah Lecturer A S2 2 Morgan ...
...

...
...

...
...

. . .
(1) FIRSTNAME
(2) FULLNAME
(3) PROV_STUDENTS_S__ID
(4) PROV_STUDENTS_STUDENT__ID
(5) PROV_STUDENTS_LASTNAME

Table 9: Result of Query 3 with Provenance in
GProM (first 6 rows)

The result is printed in Table 9. A huge number of
extra columns is generated. Because it is such a large
table we decided only to show here the very beginning
of the table.

Additionally we observed that GProM prints a
warning message:

Attribute <STUDENT_ID> appears more than
once in [...]

It appears that the equially named column are not
resolveable by GProM.

Since provenance game graphs are unique to GProM
among out tools, we want to test them as well. As
example we will use Query 3 again. This time we need
to translate our SQL query into Datalog. The new query

is listed in Command 10. When executing this in the
command line interface, a picture is created. Figure 10
shows the output.

Res(firstname, fullname) :-
students(s_id, student_id, lastname,

firstname, study_course),
participants(p_id, course_nr,

student_id),
lecturers(l_id, course_nr, fullname).

WHY(Res(’Jack’, ’Lecturer B’)).

Command 10: Query 3 in Datalog

Figure 10: Provenance game graph for Query 3

Conclusion GProM is easy to install and well
documented. Multiple database backends are supported.
Queries can be written in SQL and Datalog. GProM’s
unique feature is the production of provenance game
graphs. Most features are working as expected. For
instance, inner joins lead to error messages. Unlike its
predecessor Perm, GProM does not provide a graphical
user interface.

3.5 ProvSQL

What is ProvSQL? ProvSQL is an extension for
PostgreSQL that was first mentioned in 2017 [Sen17]
and presented in 2018 [Sen+18]. The tool uses
annotations to calculate provenance polynomials. Also,
it is capable of displaying provenance graphs of
results. ProvSQL does not modify the source code of
PostgreSQL, therefore it is not required to use a specific
or modified version of PostgreSQL besides the default
versions. Furthermore all features are provided by
functions that are used in SQL commands. It is available
on GitHub5 and published under the MIT License. As of
today, ProvSQL is still being developed.

Literature & Provenance We can calculate
provenance using various semirings. These are
handled as described in Section 2.4.4. The user may
use pre-defined provenance semirings like formula (the

5https://github.com/PierreSenellart/provsql/
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how-semiring as described in [Sen17]) or the counting
semiring. The definition of user-defined provenance
semirings is possible. ProvSQL supports most common
SQL keywords. However, aggregation is not supported.
Senellart et al. explain that they have to implement
semimodules in order to support aggregations [Sen+18].
In addition ProvSQL supports the calculation of
where-provenance.

What we observe Before ProvSQL can be used, the
search path of PostgreSQL has to be updated to include
the provsql schema, as well:

SET search_path TO public, provsql;

Afterwards, ProvSQL is ready to use. The first step
should be the addition of provenance. This can be done
by calling the add_provenane function on a relation,
e.g. SELECT add_provenance(’students’);.
The provenance annotations of ProvSQL are based
on randomly generated UUIDs. One feature of the
tool is the presentation of how-provenance. The
user can choose which attribute of the queried table
the formulas should contain. This is handled
by mappings which, however, have to be created
manually by using the user-defined function (UDF)
create_provenance_mapping. This function
takes three arguments: the desired name of the mapping,
the name of the table, and the name of the column
holding the data. An example can be seen in Command
11. We can observe that calling this UDF creates a new
table which gets the name of the mapping.

SELECT create_provenance_mapping(
’students_id_mapping’,
’students’,
’s_id’

);

Command 11: Calling the UDF
create_provenance_mapping

Let us take Query 1. When executed, ProvSQL
automatically adds a column provsql to the result
which contains UUIDs for the values. To receive
the provenance polynomial of a certain result, e. g.
“Electrical Engineering”, we can use the user-defined
function formula which takes the UUID of the result
as well as the name of the provenance mapping as
arguments. An example can be seen in Command 12.
The result is listed in Table 10.

SELECT formula(
’39371d93-587a-5b89-8e8a-89f58ef62f13’,
’students_id_mapping’

);

Command 12: Retrieving the provenance polynomial

formula
(S4 ⊕ S5 ⊕ S6)

Table 10: Result of command 12

In this table we see the column name formula. It is
displayed because we called the corresponding function
without giving it an alias. We have only one row in the
result which shows us the provenance polynomial. Now
we know that the tuples S4, S5 and S6 were combined
because they have the same course and therefore are
duplicates.

An advantage of ProvSQL is the graphical
representation of provenance polynomials and their
corresponding graphs. We want to demonstrate
it using Query 3. Let us assume we already
defined students_id_mapping as shown
in Command 11. In the same way we create
the mappings participants_id_mapping
with the PARTICIPANTS relation and
lecturers_id_mapping with the LECTURERS
relation, respectively. Since the functions in ProvSQL
take only one mapping we have to find a way to
combine different mappings. ProvSQL does not provide
commands for this task by itself. But because mappings
are stored as relations we can merge them by using
UNION. Command 13 shows how to create a view that
brings all three mappings together.

CREATE VIEW database_mapping AS (
(SELECT *

FROM students_id_mapping)
UNION
(SELECT *

FROM participants_id_mapping)
UNION
(SELECT *

FROM lecturers_id_mapping)
);

Command 13: Combining multiple mappings using
unions in a view

Now we can continue with the generation of the
provenance graph. First we have to execute the original
query, e. g. Query 3. Then we take the UUID
from the row that we are interested in. Remember
that ProvSQL adds a column of the name provsql
automatically which contains the UUIDs. In this case
we take the first ("Donald", "Professor A") value. The
corresponding UUID is "aa2f7623-3635-5b3b-9909-
ef5aea6b81e8". Next we add it as the first argument for
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the view_circuit function. As the second parameter
we add the database_mapping from Command 13
in order to display the different IDs. Command 14 shows
the complete function call.

SELECT view_circuit(
’aa2f7623-3635-5b3b-9909-ef5aea6b81e8’,
’database_mapping’

);

Command 14: Using the UDF view_circuit to
generate the provenance circuit

Figure 11: Provenance circuit of "aa2f7623-3635-
5b3b-9909-ef5aea6b81e8"

ProvSQL prints the graph as an ASCII image. Figure
11 shows the result. The root of the graph represents
the projection. Imagine you write down the column
names of STUDENTS, PARTICIPANTS and LECTURERS
and number them consecutively from one onwards.
The numbers in the parentheses are the indices of our
list. For this example, the 4 is the fourth column
of STUDENTS, FIRSTNAME and the 11 is the second
column of LECTURERS, FULLNAME. The expressions
7=10 and 2=8 are caused by the inner join. They use
the same numbering as the projection and are referencing
to the join criteria in the WHERE clause. Finally, the last
four nodes are the tuples S1, P1 and L1.1 which were
combined with the ⊗ operator. We see that these three
tuples were combined in a join. ProvSQL shows the IDs
in the graph because we put them in the mapping.

Conclusion ProvSQL is the latest tool in our
collection. It does not depend on a specific version
of PostgreSQL and is easy to install. The tool
provides its interface via user-defined functions. The
calculation of how- and where-provenance is possible.
Various semirings can be used. ProvSQL is capable
of generating provenance circuits which represent the
semiring formulas. Most common SQL keywords are
supported except aggregations.

3.6 Tioga

What is Tioga? Tioga is the oldest tool that matches
our selection critera. It was developed in 1993 as a tool
to detect forest fires and thus one of the first provenance
tools. Unfortunate, the project website and the source
code was not available anymore. Thereupon we tried to
contact several authors. We received only a few answers;
Tioga had not been published at that time. Then we
tried the successor, Tioga 2. Later it was renamed in
DataSplash. The project website6 looked promising.

Literature & Provenance Stonebraker et al.
describe Tioga in their article “Tioga: Providing
Data Management Support for Scientific Visualization
Applications” [Sto+93]. At the early time there existed
programs which presented directed graphs through
boxes and arrows. Tioga generalises this concept and
calls the diagrams recipes. Analogue to a cooking recipe
will the boxes represent the ingredients. Technically
there are the symbolization of functions in Postgres.
Various functions are working as the data passes through.
This is comparible with the workflow provenance in
Section 2.2. An recipe example is shown in Figure 12.

Figure 12: Recipe Editor in Tioga [Sto+93]

Tioga should be able to do how-provenance [PRS18].
This should be on attribute level. Thus we couln’d test
Tioga we cannot confirm the literature results of this
paper. Furthermore we tried DataSplash, the successor
of Tioga.

6http://datasplash.cs.berkeley.edu/
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What we observe Thou we couldn’t test Tioga
because the source code is not available we decided to
give DataSplash a try. The first thing we did was to check
which Linux version was up to date, Debian 3. The
installation of Debian 3 in a virtual machine was not easy
due to its age. After that, we were able to successfully
install DataSplash. But it was not properly working. The
official sample looked like Figure 13. It was the best
result we could get.

Figure 13: How DataSplash actually looks

We also tried Debian 4, Debian2, FreeBSD and Ubuntu
18.04 LTS. But we had either issues with the operability
of the older operating systems in virtual machines
or segmentation faults that we couldn’t solve.
On Ubuntu 18.04 LTS we discovered compilation
errors and not executable binaries. Particularly the
C-Library libc.so.5 vs. libc.so.6 was not
performable on this Ubuntu version.

Conclusion Tioga and DataSplash are very interessing
programs. Especially because there are the first
and oldest data provenance tools we have record off.
Unfortunately the source code is not available for Tioga
and DataSplash got a lot of problems that need much
more effort to solve. Therefore, it was no longer suitable
for us to continue with this project, and we decided to
work on other tools like ProvC&B.

3.7 ProvC&B

What is ProvC&B? ProvC&B [Ile+14a] is a tool
made by Ioana Ileana in the year 2014 implementing the
similar named Provenance-directed Chase&Backchase
algorithm [DH13].

Literature & Provenance In opposition to previous
presented applications of provenance in section 2.3

ProvC&B is using the why-provenance (see 2.4.3) to
improve the performance of answering queries using
views (AQuV) via CHASE and BACKCHASE (also
called C&B). AQuV is a method to calculate answers
to a given query while only using the ressources that
are visible to a specific user in the form of views
instead of using base relations. An increased need for
privacy could be one motivation for using views here.
The CHASE is an algorithm that, poorly explained,
incorporates integrity constraints into specific objects.
The BACKCHASE is just another CHASE that uses
the result of the first CHASE as the new object in
order to reobtain the structure of the previous chased
object. The integrity constraints used in CHASE and
BACKCHASE are just the views that are rewritten into
dependencies. Therefore chasing a query with the views
delivers a universal plan only containing views after
cutting out the base relations. This universal plan is then
chased backwards in order to obtain the base relations
that are computable only using previously determined
views. In order to find the minimal amount of views
necessary to obtain the closest result to the original
query we need to find mappings from the views to
the base relations. To find those mappings we need
to consider every subset of views and therefore the
power quantity which is algorithmically expensive to
check for mappings. Using the why-provenance here to
annotate such views and resulting relations undermines
the necessity of computing and checking such mappings
which results in reduced computational effort. Because
of the nature of the CHASE used in the algorithm we can
answer AQuV-problems even under additional integrity
constraints. For a better understanding of the C&B and
ProvC&B algorithm we would like to refer to [DH13].

What we observe Because ProvC&B is an Java
project we were able to test this on an up to date windows
operating system without noticing any differences.
Unfortunatly, four problems quickly emerged. First of
all, the Java code was poorly documented or not at all
documented. This caused some understanding problems
which leads us to the second problem. The code is
relativly difficult to understand. We cannot gain enough
knowledge about what this tool wants to do from the
source code. The thrid problem is the input. We are not
sure about it because there is no documentation about
is at all. The paper [Ile+14a] uses same names for
some input variables. Because of this we highly believe
there are the same but we couldn’t confirm this. Also
some input variables could have to do something this
benchmarking. The last and fourth problem for us were
the output. It contains only 3 numbers. A guess is that
one of the numbers is the execution time and the other
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two numbers about benchmarking. But there was no way
for us to find out about it.

Conclusion Even if the tooltest wasn’t much of a
success ProvC&B raises the utilization of provenance
to another level. Using the why-provenance actively
to decrease computational effort is an indicator that
provenance as a research topic will have more
surprises in store than just improving understandibility,
reproducibility or quality.

4 Conclusion

In this paper, we first investigated different kinds
of provenance. In Section 2, we defined the
term “provenance” and took a look at the different
applications and types of provenance, especially data
provenance. This type of provenance consists of where-,
why-, how-, and why-not-provenance. We saw that why
can be derived from where and how can be derived from
why. Additionally, we investigated data lineage which
can be considered as predecessor of why-provenance.

In Section 3, we benchmarked seven provenance tools:
Trio, ORCHESTRA, Perm, GProM, ProvSQL, Tioga,
and ProvC&B. Unfortunately, we were unable to test
Tioga and ProvC&B due to technical difficulties. A brief
summary of our test results can be seen in Table 11.

We conclude that Trio has a clear user interface
provided by TrioExplorer, even though some
implementations are missing. We were unable to
find any documentation of TrioPlus, the command-line
interface version of the tool. Trio is able to compute
three of our four test queries, lacking support for Query 1
(duplication elimination). Query 4 however, only works
when using Trio’s own horizontal subqueries. The tool
can handle why- and where-provenance. Unfortunately,
Trio lacks support for how-provenance. Also, Trio
cannot handle DELETE and UPDATE commands,
although they are described in the documentation of
TrioQL, Trio’s own query language. Aggregations are
only supported when using horizontal subqueries.

ORCHESTRA is able to handle all queries except
Query 4 (aggregations). Aggregations are not supported
at all, joins, however, work fine. Besides that,
ORCHESTRA is able to compute our three types
of data provenance, where why and how. The
why-provenance is implemented on tuple granularity.
Since ORCHESTRA uses Datalog as query language,
duplication elimination is supported by nature. The tool
uses its own GUI that can display provenance graphs for
how-provenance.

Perm is built on top of PostgreSQL and extends the
syntax of SQL for computing provenance by using a

special PROVENANCE statement. It comes with a GUI
called Perm Browser and a query rewriter that translates
special provenance queries to common SQL queries.
Perm is the only tool besides – with some limitations
– GProM that can process all of our four queries. It
is able to compute why- and where-provenance but,
unfortunately, lacks support for how-provenance.

When we tested GProM, we discovered that it is
well documented and easy to install. It supports four
different database backends and SQL as well as Datalog
as frontend languages. What makes GProM unique is its
ability to generate provenance game graphs, hence it is
able to handle why- and why-not-provenance. GProM is
able to compute all of our four queries, although Query
2 has to be rewritten because GProM cannot handle the
JOIN keyword. GProM is one out of two tools we have
tested that is still being actively developed.

ProvSQL is the second tool tested that is still
maintained by its developers. It’s an extension for
PostgreSQL and therefore does not require any specific
version of it. ProvSQL works by using user-defined
functions for provenance computation. It is noteworthy
that ProvSQL can handle where- and why- as well as
how-provenance and is also able to produce provenance
circuits for how-provenance, based on provenance
semirings. The tool can process Query 1 to 3 but
lacks support for Query 4 because aggregations are not
supported yet.

Unfortunately, we were not able to test Tioga and
DataSplash. The source code of the former is not
available (anymore) and due to technical problems, we
were unable to test the latter. Although the tool tests were
not very successful, we think that Tioga and DataSplash
are quite interesting tools.

Besides Tioga, we were also unable to test ProvC&B
due to poorly documented code, unknown inputs and
unreadable outputs. However, we believe that ProvC&B
might be a powerful tool because it uses why-provenance
not for tracking origins of data or understandability
but for optimizing an algorithm. ProvC&B therefore
is an example for the importance of research on data
provenance.

Table 11 shows a summary of our test results. As can
be seen, two out of the five working tools – Perm and
GProM – can handle all of our four queries. Two other of
them – ORCHESTRA and ProvSQL – can compute all
three main kinds of data provenance. Besides that, the
table shows if a tool is still under active development as
well as its publishing license. Interestingly, the tools that
are able to calculate the how-provenance cannot handle
Query 4which involves aggregations. How-provenance
for aggregations is still being researched and therefore,
tools that can deal with how-provenance, might have
exceeded its limit for now.
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Tool
Query Provenance types Under active

development? License
1 2 3 4 How Why Where

Trio 7 3 3 37 7 3 3 7 BSD License

ORCHESTRA 3 3 3 7
3

(Graph) 3 3 7
Apache License,

Version 2.0

Perm 3 3 3 3 7 3 3 7
PostgreSQL

License

GProM 3 38 3 3 7 3 3 3
Apache License,

Version 2.0

ProvSQL 3 3 3 7 3 3 3 3 MIT License

Table 11: Tool comparison table
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A Appendix

A.1 Tables of the university database

s_id student_id lastname firstname study_course
S1 1 Moore Donald Computer Science for Teaching
S2 2 Morgan Sarah Mathematics
S3 3 Wood Jack Electrical Engineering
S4 4 Harrison Elisabeth Computer Science
S5 5 Williams John Computer Science
S6 6 William Mary Computer Science
S7 7 Smith Jack Electrical Engineering
S8 8 John Jennifer Theoretical Computer Science

Table 12: Table STUDENTS

c_id course_nr title
C1 001 Database Systems and Data Science
C2 002 Operating Systems
C3 003 Artificial Intelligence
C4 004 Probability Theory
C5 005 Algorithms and Data Structures
C6 006 Object-Oriented Programming
C7 007 Law and Computer Science
C8 008 Data Warehouses and Business Intelligence
C9 009 Networks and Cybersecurity

Table 13: Table COURSES

l_id course_nr fullname
L1.1 001 Professor A
L1.2 001 Lecturer A
L2 002 Professor B
L3 003 Professor C
L4 004 Professor D
L5 005 Lecturer B
L6 006 Professor D
L7 007 Professor A
L8 008 Professor E
L9 009 Professor A

Table 14: Table LECTURERS
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p_id course_nr student_id
P 1 001 1
P 2 001 2
P 3 001 4
P 4 001 5
P 5 002 1
P 6 002 2
P 7 002 3
P 8 002 4
P 9 002 5
P 10 002 6
P 11 002 7
P 12 003 1
P 13 004 3
P 14 004 5
P 15 004 7
P 16 005 4
P 17 005 7
P 18 006 4
P 19 006 5
P 20 007 1
P 21 007 3
P 22 007 5
P 23 008 3
P 24 009 1
P 25 009 4
P 26 009 5

Table 15: Table PARTICIPANTS
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g_id course_nr student_id semester grade
G1 001 1 SS 16 2.0
G2 001 2 SS 16 1.7
G3 001 4 SS 16 1.7
G4 001 5 SS 16 3.0
G5 002 1 WS 15/16 3.7
G6 002 2 WS 14/15 1.3
G7 002 3 WS 14/15 2.3
G8 002 4 WS 15/16 1.0
G9 002 5 WS 15/16 1.3
G10 002 6 WS 15/16 2.0
G11 002 7 WS 15/16 3.3
G12 003 1 WS 16/17 1.0
G13 004 3 WS 16/17 1.3
G14 004 5 WS 16/17 3.0
G15 005 4 SS 17 2.7
G16 005 7 SS 17 1.7
G17 006 4 SS 17 2.7
G18 006 5 SS 17 4.0
G19 007 1 SS 16 2.3
G20 007 3 SS 16 1.7
G21 009 1 SS 16 3.3
G22 009 5 SS 15 5.0
G23 009 5 SS 16 2.7

Table 16: Table GRADES

A.2 Queries

SELECT DISTINCT study_course FROM students;

Command 15: Query 1

study_course how why where lineage
Computer Science S3 ⊕ S7

{
{S3}, {S7}

}
STUDENTS S3, S7

Computer Science for
Teaching

S1

{
{S1}

}
STUDENTS S1

Electrical
Engineering

S4 ⊕ S5 ⊕ S6

{
{S4}, {S5}, {S6}

}
STUDENTS S4, S5, S6

Mathematics S2

{
{S2}

}
STUDENTS S2

Theoretical
Computer Science

S8

{
{S8}

}
STUDENTS S8

Table 17: Result of Query 1 with Provenance

SELECT
s.s_id, s.lastname, s.firstname,
p.p_id, p.course_nr

FROM
students s INNER JOIN
participants p ON s.student_id = p.student_id
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WHERE
p.course_nr = ’005’

;

Command 16: Query 2

s_id lastname firstname p_id course_nr how why where lineage
S4 Harrison Elisabeth P 16 005 S4 ⊗ P16

{
{S4, P16}

}
STUDENTS,
PARTICIPANTS

S4, P16

S7 Smith Jack P 17 005 S7 ⊗ P17

{
{S7, P17}

}
STUDENTS,
PARTICIPANTS

S7, P17

Table 18: Result of Query 2 with Provenance

SELECT s.firstname, l.fullname
FROM students s, participants p, lecturers l
WHERE s.student_id = p.student_id
AND p.course_nr = l.course_nr;

Command 17: Query 3

firstname fullname how why where lineage
Donald Lecturer A S1 ⊗ P1 ⊗ L1.2

{
{S1, P1, L1.2}

}
STUDENTS,
LECTURERS

S1, P1, L1.2

Donald Professor A S1 ⊗ P1 ⊗ L1.1

{
{S1, P1, L1.1}

}
STUDENTS,
LECTURERS

S1, P1, L1.1

Sarah Lecturer A S2 ⊗ P2 ⊗ L1.2

{
{S2, P2, L1.2}

}
STUDENTS,
LECTURERS

S2, P2, L1.2

Sarah Professor A S2 ⊗ P2 ⊗ L1.1

{
{S2, P2, L1.1}

}
STUDENTS,
LECTURERS

S2, P2, L1.1

Elisabeth Lecturer A S4 ⊗ P3 ⊗ L1.2

{
{S4, P3, L1.2}

}
STUDENTS,
LECTURERS

S4, P3, L1.2

Elisabeth Professor A S4 ⊗ P3 ⊗ L1.1

{
{S4, P3, L1.1}

}
STUDENTS,
LECTURERS

S4, P3, L1.1

John Lecturer A S5 ⊗ P4 ⊗ L1.2

{
{S5, P4, L1.2}

}
STUDENTS,
LECTURERS

S5, P4, L1.2

John Professor A S5 ⊗ P4 ⊗ L1.1

{
{S5, P4, L1.1}

}
STUDENTS,
LECTURERS

S5, P4, L1.1

... ... ... ... ... ...

Table 19: Result of Query 3 (first 8 rows) with Provenance
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firstname fullname
Donald Lecturer A
Donald Professor A
Sarah Lecturer A
Sarah Professor A
Elisabeth Lecturer A
Elisabeth Professor A
John Lecturer A
John Professor A
Donald Professor B
Sarah Professor B
Jack Professor B
Elisabeth Professor B
John Professor B
Mary Professor B
Jack Professor B
Donald Professor C
Jack Professor D
John Professor D
Jack Professor D
Elisabeth Lecturer B
Jack Lecturer B
Elisabeth Professor D
John Professor D
Donald Professor A
Jack Professor A
John Professor A
Jack Professor E
Donald Professor A
Elisabeth Professor A
John Professor A

Table 20: Full Result of Query 3

SELECT grade, count(*) AS gcount
FROM grades
WHERE course_nr = ’002’
GROUP BY grade
ORDER BY grade;

Command 18: Query 4
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grade gcount how why where lineage
1.0 1 G8

{
{G8}

}
GRADES G8

1.3 2 G6 ⊕G9

{
{G6, G9}

}
GRADES G6, G9

2.0 1 G10

{
{G10}

}
GRADES G10

2.3 1 G7

{
{G7}

}
GRADES G7

3.3 1 G11

{
{G11}

}
GRADES G11

3.7 1 G5

{
{G5}

}
GRADES G5

Table 21: Result of Query 4 with Provenance
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