
Technical Report CS-01-23
Computing Provenance Using the Negated Chase

Andreas Görres, Andreas Heuer

Universität Rostock
Fakultät für Informatik und Elektrotechnik

Institut für Informatik
Lehrstuhl für Datenbank- und Informationssysteme

Long version of a 4-page conference paper
for VLDB PhD Workshop 2023,

erhältlich unter:

www.ls-dbis.de/digbib/dbis-tr-cs-01-23.pdf

Computing Provenance Using the Negated Chase Andreas Görres, Andreas Heuer

Computing Provenance Using the Negated Chase

Andreas Görres, Andreas Heuer
Database Research Group

University of Rostock
18051 Rostock

(andreas.goerres|andreas.heuer)(at)uni-rostock.de

Abstract: Since different challenges of data processing are interconnected, we descri-
be them in a unified manner using a classic algorithm of database theory: the Chase.
Explaining the origin of query results is one of the challenges considered in this re-
search project. Previously, the Chase has been used to calculate why-provenance of
simple conjunctive queries. However, applying the Chase to more realistic scenarios
requires an extension of the algorithm, for example with negation. This work reveals
opportunities for the extended Chase by calculating both why- and why-not prove-
nance of conjunctive queries with negation.

1 Introduction

When processing large amounts of data in a systematic fashion, we usually solve the
arising issues with algorithms tailored towards the specific challenge. Even though this
strategy leads to increased efficiency on a local level, we miss connections between the
existing problems. For instance, privacy and provenance are contradictory requirements
usually solved in isolation from each other.

If we describe data processing with the concept of the data science pipeline1, privacy and
provenance can be mapped to individual steps of the pipeline, but at the same time, they
are requirements for the other steps. Therefore, we need to consider them while designing
the database schema, schema evolution, cleaning the data, transforming the queries and
while processing the results of data analysis. Formulating separate issues with a single
consistent language makes this possible. In our research, we chose the language of the
Chase algorithm.

The ChaseP (O) integrates a parameter P into an object O, in the classical applications
using integrity constraints as P and database schemas or queries as O. The Chase is a
classic algorithm of database theory. It was introduced more than four decades ago, and
right from the start, the Chase processed two seemingly unrelated use cases – query opti-
mization and schema construction – in a unified way [ASU79, MMS79]. In the following
years, the Chase was slightly extended and the number of its application areas increased
even further. The concept of “universal solution” connects the Chase’s many application
cases [DNR08]. Since then, intense research lead to a deeper understanding of the algo-

1The data science pipeline is also called data engineering/analytics pipeline, as in [KS22]

ISSN: 0944-5900, Nummer: CS-01-23 1

Computing Provenance Using the Negated Chase Andreas Görres, Andreas Heuer

rithm’s properties, for example its termination behavior. Despite its success in the field of
theory, software tools making use of the algorithm are – for the most part – restricted to
scientific prototypes. Ultimately, we intend to use the Chase to solve practice-related use
cases, in particular, issues of privacy and provenance.

In this work, we focus on our results concerning the why- and why-not provenance. Pre-
viously, the Chase was already used to calculate the why-provenance of simple queries and
scheme transformations. However, while we interpret the Chase as a universal algorithm,
the algorithm needs to be extended for more realistic – and more complex – scenarios. Un-
fortunately, those extensions endanger confluence, termination and efficiency of the Chase.
While our general research goal targets the universal Chase applicable to a broad variety
of objects – like queries, database schemes, database instances or deductive databases –
the semantics of its extensions depends on the Chase object and therefore the use case.
While privacy issues can be solved with the Chase on queries, identifying relevant data in
a database requires the Chase on database instances, which is therefore the focus of this
work.

1.1 Data Science Pipeline

Data processing can be divided into a sequence of steps we call the data science pipeline.
The initial step – data preparation – comprises schema design, data cleaning and data
integration. Subsequently, data analysis takes place, which we abstract as a sequence of
database queries. In a final post-processing phase, results are interpreted and issues of
privacy and provenance are tackled. In the following, we will take a closer look at the
individual steps highlight the contributions of the Chase algorithm.

During schema design, Chase parameter P comprises data dependencies and Chase object
O is the database schema, possibly encoded as a tableau.

For data cleaning, P are integrity constraints (e.g. key constraints) and O is the database
instance. The Chase might substitute null values with constants by making use of func-
tional dependencies or insert missing tuples, e.g. to satisfy inclusion dependencies. While
this approach fails if there are conflicting constants present in the database, there are Chase
based approaches dealing with this issue as well [GMPS20].

Database integration (including data exchange [FKMP05]) takes data from one or sever-
al source instances – under the respective schemas – to generate a target instance. Again,
O is the set of database instances, whereas P are rules describing a mapping from source
to target schemas.

For data analysis, O is again the database instance, while P includes the database que-
ries. Queries can be seen as data exchange rules from the research data to a virtual result
instance. However, our interest in complex data analysis comprising e.g. statistical analy-
sis, warrants an extension of the current Chase formalism, for example with mathematical
operators or negation.

When databases and database schemas evolve over time, we need schema evolution tech-

ISSN: 0944-5900, Nummer: CS-01-23 2

Computing Provenance Using the Negated Chase Andreas Görres, Andreas Heuer

niques to describe the evolution steps and to perform schema and corresponding database
changes. In terms of Chase, P is a set of schema mappings and O is the database schema
and the database, the evolution process is applied to. Fagin [FKMP05] describes schema
evolution with schema mappings in this way and combines it with other aspects of the
data science pipeline, such as schema integration or data exchange. This composition of
different steps of the database science pipeline is also our idea here, we extend it to other
steps of the pipeline as well, such as provenance and privacy.

Before publication of analysis results, the responsible raw data needs to be identified using
provenance techniques. This way, reproducibility of the results is guaranteed. At the same
time, privacy guidelines might prohibit direct access to the raw data, for example when
personal information is concerned. To calculate provenance, we invert the Chase rules
used in the previous data analysis step. Here, O refers to the achieved analysis results. In
contrast to this, we improve privacy by applying Chase rules (e.g. view definitions) onto
the query as the Chase object. By combining different Chase applications, we contribute
to every step of the data science pipeline.

1.2 Research Data Management

One of the real world application areas motivating our research is research data manage-
ment. Many of our use cases originate from our long term co-operation with the Institute
for Baltic Sea Research (IOW). Here, reproducibility of published research results is a
requirement for good scientific conduct. However, the schema of recorded data changes
over time. Thus, while tracing back results to the responsible data, we need to account
for schema evolution. After identifying involved tuples, scientists provide them – and not
the entire data set – to a reviewer. If personal data is involved, data access might require
additional restrictions.

1.3 Negation in Data Analysis

As we mentioned before, we interpret data analysis as a series of database queries, which
in turn are expressed as Chase rules. In particular, we are interested in statistical analysis
of scientific data. While negation is a central element in those analysis algorithms, general
negation is not part of the standard Chase. First, negation might be used to avoid redun-
dancy and thereby increase efficiency. Implicitly, this variant of negation is already part of
the Chase algorithm: A rule is only not applied if its trigger is inactive, that is, if the rule
is already satisfied by the Chase object. Second, some kind of negation might be explicit
part of the analysis algorithm, for example in the form of set difference. Third, negation
can be implicit part of basic aggregate function. The maximum of an attribute can, for
example, be defined as the value for which no greater value exists in said attribute. Fourth,
negation can be used to simulate an imperative algorithm using the declarative language
of Chase rules. To iterate over all tuples of a database relation, identifiers of tuples alrea-

ISSN: 0944-5900, Nummer: CS-01-23 3

Computing Provenance Using the Negated Chase Andreas Görres, Andreas Heuer

dy considered are inserted into a certain relation. By negating identifiers in this relation,
we guarantee that each tuple is considered only once. This way, we can describe more
complex aggregate functions. However, the fourth use case of negation is not relevant for
provenance calculation.

1.4 Contribution

Using the Chase algorithm, we solve interconnected challenges of the data science pi-
peline in a coordinated manner. In this work, we study how previous results concerning
provenance calculation are affected if we extend the Chase with negation. While the Con-
ditional Chase we describe here has been studied in previous theoretical works [GO11],
connecting it to Chase negation is quite unusual. Furthermore, this extension allows the
calculation of instance based why-not provenance. While the calculation of why-not pro-
venance itself is already possible with specialized algorithms, our Chase based solution is
directly integrated into a framework solving a multitude of other data science challenges,
for example schema evolution and query transformation.

2 State of the Art

The Chase is a fixpoint algorithm incorporating a set of rules, the Chase parameter, into a
Chase object. In this work, the Chase parameter is a query or transformation rule, while the
Chase object is a database instance. Chase rules considered here are logical implications
called tuple generating dependencies (tgds), which have the general form φ(~x, ~y) → ∃~z :
ψ(~x, ~z). Here, φ and ψ are sets of relational atoms over the depicted variables. If the
tgd encodes a query, we often existentially quantify ~y, while at the same time prohibit
existentially quantified variables ~z in the rule head (its right hand side). The head of a query
is usually a single, unnamed atom (~x). The inversion of a tgd is the logical implication
ψ(~x, ~z) → ∃~y : ψ(~x, ~y).

If there is a homomorphic mapping of a Chase rule’s body (the left hand side) and the
rule is not satisfied yet (the trigger is active), the rule head is materialized. Consequently,
the rule head’s image under the homomorphism is materialized and a set of new tuples is
generated. For each existentially quantified variable in the rule head, a fresh marked null
value ηi(i ∈ N) is generated. The Chase continues until a fix point is reached, however,
termination is not guaranteed if existentially quantified variables in the rule head are allo-
wed and the rules are cyclic. Still, there are several termination tests guaranteeing Chase
termination even on cyclic rule sets. The Chase variant explained later in this work, the
Conditional Chase, is for example guaranteed to terminate on richly acyclic rule sets in
polynomial time [GO11].

In general, provenance can be seen as meta-data describing a production process [HDB17].
In the context of our generalizing research approach, why- and why-not data provenance

ISSN: 0944-5900, Nummer: CS-01-23 4

Computing Provenance Using the Negated Chase Andreas Görres, Andreas Heuer

are of particular interest. In contrast, a specialized prototypes computing more detailed
variants of provenance can be found in [SJMR18].

Why-provenance provides the tuples involved in the generation of a certain result. Those
tuples may be presented in the form of a witness basis. Each witness is a tuple of the
original database justifying the given result. Quite often, for example if tuples become
indistinguishable after projection, there are alternative sets of tuples witnessing the same
result. Thus, a witness basis may consist of several sets of tuples. Alternatively, using the
Chase on the inverted query leads us to a generic representative for a set of alternative
witnesses (compare the relaxed Chase-inverse in [FKPT11]).

Why-not provenance provides an explanation why some expected tuples were not part of
the result. This explanation can take three different forms: Instance based explanations,
query based explanations and refinement based explanations [HDB17]. Since the Chase
algorithm does not allow the deletion of tuples or update of constants, we restrict ourselves
to explanations based on the insertion of tuples into the database. The algorithm calculating
why-not provenance in [HH10] relies heavily on the concept of conditions and c-tables.
By making use of the Conditional Chase, we combine this concept with the Chase-based
solution calculating why-provenance.

Notice, however, that our concept of condition refers to comparisons with undetermined
values of the Chase object (that is, null values), while in [HH10], conditions comprise
comparisons in the query (in our concept: the Chase parameter) and constants in the ex-
pected result.

While [AHH22] formalizes both evolution rules and conjunctive queries using the lan-
guage of the Chase, only a subset of practice relevant schema transformations is discus-
sed. Furthermore, only non-recursive queries are actually inverted using the Chase (even
though provenance of more complex expressions, e.g. recursive Chase programs encoding
aggregate functions, is examined using other provenance techniques). In contrast to this,
our starting point is the (extended) Chase algorithm itself, so we initially consider queries
and schema transformations described by general tgds (with negation).

3 Implementation

With the Chase implementation ChaTEAU, different applications of the Chase are com-
bined in a in a single toolkit [AHH22]. Currently, extensions like generalized negation on
database instances and queries under the conditional semantics discussed in this work are
integrated into the software.

4 Negation on Instances

While we regard the Chase as a universal algorithm handling different kinds of parameters
and objects in a unified manner, semantics of negation still depends on the Chase object.

ISSN: 0944-5900, Nummer: CS-01-23 5

Computing Provenance Using the Negated Chase Andreas Görres, Andreas Heuer

For the Chase on instances, negation in a Chase rule requires the absence of a certain set of
tuples. In contrast, negation in Chase rules applied to queries requires the presence of an
explicitly negated set of atoms in the query. As a consequence, we differentiate between
negation as a negated boolean subquery (from integrity constraint to Chase object database
instance), and negation as a boolean subquery with inverted direction (from Chase object
query to integrity constraint). In this work, we will focus on the first case, since it is more
relevant the use case data provenance. After finding a term mapping h for all variables
of the positive body of an integrity constraint, we select the atoms φ(~x, ~y) of a negative
body ¬∃~y : φ(~x, ~y) (that is, a negated conjunction of relational atoms). If the result of
the boolean query φ(~x, ~y) → () is (), we reject h, otherwise, we continue with the next
negative body or complete the Chase step (e.g. generate some tuples).

In this work, we will focus on semi-positive negation, that is, negation of base relations.
Otherwise, we can no longer guarantee a single generic witness base and calculations
become rather complicated.

5 Conditions and Certain Answers Semantics

The standard Chase algorithm (without negation) operates under certain answers semanti-
cs. For this, we interpret (marked) null values as unknown, but existing values. We consider
only results justified under any valuation of null values with concrete constants. For posi-
tive rules, it is sufficient to interpret null values as constants unequal to any constant in the
database instance. However, this naive interpretation is not sufficient for negation under
certain answers semantics. Consider a rule that is only triggered if a specific null value
η1 equals a certain constant c. Under naive interpretation (and under trinary semantics of
SQL), η1 is not equal to c and no result tuple is generated. However, another rule with
negation would be blocked by this result tuple. Since we did not generate the blocking
tuple, the result tuple of the second rule is produced. Clearly, this does not follow certain
answers semantics, since there is a valuation of null values (the valuation of η1 with c)
not justifying the generation of this tuple. To solve this issue, we not only consider cer-
tain tuples (true under any valuation of null values), but also tuples existing under certain
conditions. For this paper, we define conditions as conjunctions of the logical compari-
sons xθy (θ ∈ {=, 6=}, x ∈ CONST, y ∈ CONST ∪ NULL), with CONST being the
set of all constants of the domain and NULL being the set of all marked null values. In
the previous example, the blocking tuple would be generated under the condition η1 = c,
while the second result tuple would be generated under the inverted condition η1 6= c.
The conditions of several equivalent tuples might complete each other to form a tautology.
For example, the blocking tuple and the second result tuple of the previous example might
have been identical. In this case, conditions can be omitted and the condition free tuples
exist under certain answers semantics.

ISSN: 0944-5900, Nummer: CS-01-23 6

Computing Provenance Using the Negated Chase Andreas Görres, Andreas Heuer

6 Provenance and the Minimal Witness Basis

6.1 Why Provenance

As mentioned before, we can use the standard Chase algorithm (without negation) to cal-
culate the why-provenance of query results. The notion of why-provenance used here is
based on the relaxed Chase-inverse found in [FKPT11].

For this, we invert the Chase rules that created the result by switching the rule’s head and
body. Attribute values not passed to the result (non frontier variables of the s-t tgd) become
existentially quantified variables of the inverted Chase rule.

Applying the inverted query to the result using the so-called Backchase generates the mi-
nimal 2 witness basis. This witness basis is sufficient to create the same query result as the
original instance. However, it is usually smaller than the latter and contains marked null
values in places irrelevant for the query.

For the most part, we can ignore semi-positive negation when calculating why-provenance.
However, the same witness might play different roles during query execution. Consider
query q on instance I:

I = {R(1), R(2), S(2)}
q : R(x) ∧R(y) ∧ ¬S(y) → (x, y).

If we ignore the semi-positive negation of S, the witness basis is {R(1), R(2)}. Indeed,
even if we materialize the image of q’s negative body, we only learn that S(1) cannot
exist, but we learn nothing about S(2). Consequently, we can justify the existence of all
previously published results {(1, 1), (2, 1)}, but we could additionally justify the result
(2, 2). The absence of this expected result from the published result could be explained
using why-not provenance. However, the instance based why-not provenance presented in
this work is restricted to insertions – clearly, there is no way to generate (2, 2) by inserting
additional tuples into the database.

While the method described above can be used for recursive queries, it should be noted
that an inverted Chase program might not terminate even though termination of the original
program is guaranteed.

This is, for example, the case with the following Chase program comprising the single tgds
r1 and its inversion r−1

1 :

r1: R(x, y) ∧ S(y) → ∃z : R(y, z)
r−1
1 : R(y, z) → ∃x : R(x, y) ∧ S(y).

Apart from this problem of Chase termination, different levels of selectivity in tgds trig-
gering each other might prohibit inversion. If, for example, the first rule generates a fixed

2Strictly speaking, the witness basis is only guaranteed to be minimal if we use the Core Chase, a variant of
the standard Chase.

ISSN: 0944-5900, Nummer: CS-01-23 7

Computing Provenance Using the Negated Chase Andreas Görres, Andreas Heuer

constant in an attribute, while this attribute is ignored by the second rule, that is, there is
neither a selection concerning this attribute, nor is the attribute value passed to the gene-
rated tuple. Even though the first rule triggers the second rule, the inversion of the second
rule does not trigger the first one, since the generated null value 3 is not equal to the con-
stant the inverted first rule selects for. While the reduction of selectivity causes problems
for inversion in general, an increase in selectivity (constants in the body of the second rule
that do not appear in the head of the first one) is without consequences for both why- and
why-not provenance if we do not allow existentially quantified variables in any rule head.

The problems described until now are not specific for negation. If we extend the Chase-
based calculation of why-provenance to stratifiable rule sets (with negation), nested nega-
tion might lead to alternative positive witnesses. Consider the following example of the
transformation rule revol, describing a schema evolution, and query q, which addresses the
target of the previous evolution:

revol: R(1) ∧ ¬R(2) → S(4)
q : T (x) ∧ ¬S(4) → Q(x).

The witness base for the resultQ(1) is {T (1)∧¬(R(1)∧¬R(2))}, which can be simplified
as the disjunction of witnesses {T (1)∧¬R(1)} ∨ {T (1)∧R(2)}. Even though we might
eventually drop the negated part of the witness base, at first, we need it to to identify
contradictions (e.g. bases containing both the positive and the negated variant of the same
witness).

6.2 Why-not Provenance

Similarly to the why-provenance, the Chase algorithm can be used to calculate instance
based why-not explanations. As a starting point, we apply the inverted query to the expec-
ted result 4. The Chase result, if it exists, comprises the generic witness basis. However,
the existence of an instance based explanation is not guaranteed. If the select part of our
SQL query contains a specific constant, no changes in the database could generate a dif-
ferent constant in this position and we would be unable generate a generic witness basis.
Deviating from the previous explanation of why-provenance, we map generic witnesses to
concrete database tuples – those tuples are not part of the why-not explanation.

To calculate a mapping of a subset of witnesses (with null values) to the original database,
we use the Conditional Chase. Initially, we tag every tuple of the original database with the
same identifier, and each tuple of the generic witness basis (the explanation tuples) with
an individual identifier. We interpret another copy of the witness basis as a query returning
identifiers of all involved tuples (the witness query). Null values of the witness basis are
substituted by fresh existentially quantified variables, and the identifiers by universally
quantified variables (also appearing in the query head).

3Since the attribute value is not passed to the created tuple, the variable is a “non-frontier variable” and
existentially quantified in the inverted second rule – therefore, it generates a null value.

4The expected result refers here to the union of missing tuples and the originally achieved result.

ISSN: 0944-5900, Nummer: CS-01-23 8

Computing Provenance Using the Negated Chase Andreas Görres, Andreas Heuer

After applying this query to the database instance that is enriched with identifiers, we
return the result with the smallest number of different witness ids.

If one of the results contains solely the default identifier of the existing database, there is
no instance based (and insertion based) why-not explanation since all generic witnesses
can be mapped to already existing tuples. Otherwise, identifiers of the result refer to the
tuples in the generic witness basis that are part of the why-not explanation.

If a witness mapped to a tuple from the why-not explanation and a witness mapped to
a tuple from the original database share existentially quantified variables, this variable
is mapped to a marked null value (from the explanation tuple) and a constant (from the
existing tuple). The Conditional Chase allows this mapping under the condition that null
value and constant are equal. If those equality conditions are consistent, we interpret them
as term mappings and substitute null values of explanation tuples with constants of the
original database instance.

Finally, we incorporate negation into this method. Inverting a query with negative body
will lead to a tgd with negation in its head. The image of this negated atom set will be
used when constructing the witness query, but not the explanation tuples. When conside-
ring negation, a specific mapping of the generic witness basis might become impossible.
Other mappings might only be possible under certain (inequality) conditions. Those con-
ditions being incompatible with the established (equality) conditions invalidates additional
mapping.

Consider the following simple example. Query q1 was applied to the original database
instance I , but did not generate the expected result (1). Using the Backchase with inverted
q1 on (1) generates a generic witness basis. Iwit is the union of I and explanation tuples
from this witness basis. We mark the tuples in Iwit with an identifier (0 for tuples from I
and integers greater than 0 for explanation tuples):

I = {R(1, 2), S(2)}
q1 : R(x, y) ∧ ¬T (y) → (x)
Iwit = {R(1, 2, 0), S(2, 0), R(1, η1, 1)}
qwit : R(1, e1, id1) ∧ ¬S(e1, id2) → (id1).

There exist two mappings from qwit’s positive body to Iwit. However, mapping
R(1, e1, id1) to R(1, 2, 0) allows the mapping of S(e1, id2) to S(2, 0). In contrast, map-
ping the positive body to R(1, η1, 1) allows no consistent valuation of S(e1, id2) under
condition η1 6= 2. In conclusion, the minimal why-not explanation consists of R(1, η1, 1)
under condition η1 6= 2. Thus, inserting R(1, η1) into the original database leads, under
naive interpretation of null values, to the expected result (1).

While general Chase rules comprise tuple generating dependencies with existentially
quantified head variables (generating fresh marked null values), queries (and schema trans-
formation rules) considered here are restricted to universally quantified variables and con-
stants in their conclusion. Otherwise, a tgd might generate a fresh null value tested for
equality with an other value in the subsequent tgd. Since the null value is freshly genera-
ted, this test always fails and the negation should have no consequences for the why-not

ISSN: 0944-5900, Nummer: CS-01-23 9

Computing Provenance Using the Negated Chase Andreas Görres, Andreas Heuer

explanation. Examine the following query q which negates the result of the schema evolu-
tion encoded by revol.

revol : R(1) ∧ ¬R(2) → ∃e : S(4, e)
q : T (x, y) ∧ ¬S(4, y) → Q(x).

Since the null value generated by qsub in the second attribute of S is not transferred to T ,
we cannot map both occurrences of y in qmain with this null value. The inverted trans-
formation rule revol, however, generates the same disjunction of witnesses as the previous
example ({¬R(1)}∨{R(2)}). Since those witnesses do not contain the null value created
by the inverted main query, mapping the witness base to the database instance will not
generate conditions for this value. Therefore, the tuple R(2) is an unneeded part of the
explanation and the why not explanation is not minimal.

7 Future Work

In this work, we described for two types of provenance – why-provenance and instance ba-
sed why-not provenance – Chase based solutions. In our next publications, we will include
other types of why-not provenance – e.g. deletion based explanations – into our framework.
Unfortunately, the Chase fails directly when detecting a violated primary key dependen-
cy involving unequal constants. Deletion based why-not explanations, however, need to
identify the responsible tuple instead of failing (compare the second example in [Her13]).
This warrants further Chase extensions. If we incorporate arithmetic comparisons – speci-
fically, inequality – into the algorithm, we can detect (violated) primary keys using tgds.
This way, we solve the primary key violation by deleting one of the responsible tuples, an
entirely different strategy than the one used by classic standard Chase.

The explanation given in this work only considers semi-positive negation, even though
the query itself might be recursive. If we negate the result of a subquery expressed as an
individual tgd, we require a certain order of rule application. Even though, restricting the
recursive query to a stratifiable rule set ensures a unique result. However, if negation is
present in both query and subquery, why-provenance might be explained by alternative
sets of generic witnesses.

The methods described in this work make use of a database instance as the Chase object.
However, other steps of the data science pipeline require a query to be the Chase object.
While Chase semantics are very similar for both types of objects, semantics of negation is
entirely different. Negation on instances refers to missing tuples, but to explicitly negated
atom sets in queries.

ISSN: 0944-5900, Nummer: CS-01-23 10

Computing Provenance Using the Negated Chase Andreas Görres, Andreas Heuer

8 Conclusion

With the Chase algorithm, a large variety of data science challenges can be handled in
unified manner. Provenance, for instance, can be calculated while keeping track of schema
evolution. Real world applications, however, require extensions of the algorithm which
affect its confluence and termination behavior. In this work, we demonstrate how why-
provenance and why-not provenance of conjunctive queries with semi-positive negation
can be explained using the extended Chase. While we chose the Conditional Chase to
realize certain answers semantics with negations, this decision was advantageous for the
explanation of why-not provenance even in the absence of negation.

Acknowledgments

This work was supported by a scholarship of the Landesgraduiertenförderung
Mecklenburg-Vorpommern.

Literatur

[AHH22] Tanja Auge, Moritz Hanzig und Andreas Heuer. ProSA Pipeline: Provenance Conquers
the Chase. In ADBIS (Short Papers), Jgg. 1652 of Communications in Computer and
Information Science, Seiten 89–98. Springer, 2022.

[ASU79] Alfred V. Aho, Yehoshua Sagiv und Jeffrey D. Ullman. Efficient Optimization of a Class
of Relational Expressions. ACM Trans. Database Syst., 4(4):435–454, 1979.

[DNR08] Alin Deutsch, Alan Nash und Jeffrey B. Remmel. The chase revisited. In PODS, Seiten
149–158. ACM, 2008.

[FKMP05] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller und Lucian Popa. Data exchange:
semantics and query answering. Theor. Comput. Sci., 336(1):89–124, 2005.

[FKPT11] Ronald Fagin, Phokion G. Kolaitis, Lucian Popa und Wang Chiew Tan. Schema Map-
ping Evolution Through Composition and Inversion. In Schema Matching and Mapping,
Data-Centric Systems and Applications, Seiten 191–222. Springer, 2011.

[GMPS20] Floris Geerts, Giansalvatore Mecca, Paolo Papotti und Donatello Santoro. Cleaning data
with Llunatic. VLDB J., 29(4):867–892, 2020.

[GO11] Gösta Grahne und Adrian Onet. On Conditional Chase Termination. AMW, 11:46, 2011.

[HDB17] Melanie Herschel, Ralf Diestelkämper und Houssem Ben Lahmar. A survey on prove-
nance: What for? What form? What from? VLDB J., 26(6):881–906, 2017.

[Her13] Melanie Herschel. Wondering why data are missing from query results?: ask conseil
why-not. In CIKM, Seiten 2213–2218. ACM, 2013.

[HH10] Melanie Herschel und Mauricio A. Hernández. Explaining Missing Answers to SPJUA
Queries. Proc. VLDB Endow., 3(1):185–196, 2010.

ISSN: 0944-5900, Nummer: CS-01-23 11

Computing Provenance Using the Negated Chase Andreas Görres, Andreas Heuer

[KS22] Meike Klettke und Uta Störl. Four Generations in Data Engineering for Data Science.
Datenbank-Spektrum, 22(1):59–66, 2022.

[MMS79] David Maier, Alberto O. Mendelzon und Yehoshua Sagiv. Testing Implications of Data
Dependencies. ACM Trans. Database Syst., 4(4):455–469, 1979.

[SJMR18] Pierre Senellart, Louis Jachiet, Silviu Maniu und Yann Ramusat. ProvSQL: Provenance
and Probability Management in PostgreSQL. Proc. VLDB Endow., 11(12):2034–2037,
2018.

ISSN: 0944-5900, Nummer: CS-01-23 12

	Introduction
	Data Science Pipeline
	Research Data Management
	Negation in Data Analysis
	Contribution

	State of the Art
	Implementation
	Negation on Instances
	Conditions and Certain Answers Semantics
	Provenance and the Minimal Witness Basis
	Why Provenance
	Why-not Provenance

	Future Work
	Conclusion

