CEUR-WS.org/Vol-3452/paper8.pdf

Computing Provenance Using the Negated Chase

Andreas Gorres®*,
Supervised by Prof. Andreas Heuer?

"University of Rostock, Universitdtsplatz 1, 18055 Rostock, Germany

Abstract

Since different challenges of data processing are interconnected, we describe them in a unified manner using a classic
algorithm of database theory: the Chase. Computing the origin of query results is one of the challenges considered in this
research project. Previously, the Chase has been used to calculate why-provenance of simple conjunctive queries. However,
applying the Chase to more realistic scenarios requires an extension of the algorithm, for example with negation. This work
reveals opportunities for the extended Chase by calculating both why- and why-not provenance of conjunctive queries with

negation.

Keywords

Chase, negation, why-provenance, why-not provenance, data science pipeline

1. Introduction

When processing large amounts of data in a system-
atic fashion, we usually solve the arising issues with
algorithms tailored towards the specific challenge. Even
though this strategy leads to increased efficiency on a
local level, we miss connections between the existing
problems. For instance, privacy and provenance are con-
tradictory requirements usually solved in isolation from
each other.

If we describe data processing with the concept of the
data science pipeline, privacy and provenance can be
mapped to individual steps of the pipeline, but at the
same time, they are requirements for the other steps.
Therefore, we need to consider them while designing the
database schema, schema evolution, cleaning the data,
transforming the queries and while processing the results
of data analysis. Formulating separate issues with a single
consistent language makes this possible. In our research,
we chose the language of the Chase algorithm.

The Chase P(O) integrates a parameter P into an
object O, in the classical applications using integrity con-
straints as P and database schemas or queries as O. The
algorithm was introduced more than four decades ago,
processing two seemingly unrelated use cases — query
optimization and schema construction — in a unified
way [1, 2]. In the following years, the number of its
application areas increased even further, with the con-
cept of “universal solution” connecting the different chal-
lenges [3]. Since then, intense research lead to a deeper
understanding of the algorithm’s properties, for example

VLDB 2023 PhD Workshop, co-located with the 49th International

Conference on Very Large Data Bases (VLDB 2023), August 28, 2023,

Vancouver, Canada

*Corresponding author.

Q& andreas.goerres@uni-rostock.de (A. Gorres)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

===1 CEUR Workshop Proceedings (CEUR-WS.org)

its termination behavior. Despite its success in the field
of theory, software tools making use of the algorithm
are — for the most part - restricted to scientific proto-
types. Ultimately, we intend to use the Chase to solve
practice-related use cases, in particular, issues of privacy
and provenance.

In this work, we focus on our results concerning the
why- and why-not provenance. Previous studies explored
Chase based solutions concerning the why-provenance
of simple queries. However, for more realistic scenarios,
extensions of the algorithm are necessary. Unfortunately,
this endangers confluence, termination and efficiency of
the Chase. While we regard the Chase as a universal al-
gorithm targeting a broad variety of objects, semantics of
its extensions depends on the Chase object and therefore
the use case. Privacy issues can be solved with the Chase
on queries, whereas provenance computations require
the Chase on database instances, which is therefore the
focus of this work.

1.1. Data Science Pipeline

Data processing can be divided into a sequence of steps
we call the data science pipeline. The initial step com-
prises schema evolution, data migration and data clean-
ing. The subsequent data analysis is abstracted as a se-
quence of database queries. Finally, results are inter-
preted and issues of privacy and provenance are tackled.
In the following, we will take a closer look at the in-
dividual steps, highlighting contributions of the Chase
algorithm. For data cleaning, Chase parameter P are in-
tegrity constraints (e.g. key constraints) and Chase object
O is the database instance. The Chase might substitute
null values with constants by making use of functional
dependencies or insert missing tuples, e.g. to satisfy in-
clusion dependencies. Data exchange (and, in a similar
manner, schema evolution) takes data from a source in-


mailto:andreas.goerres@uni-rostock.de
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

stance to generate a target instance under a different
schema. Again, O is a database instances, whereas P are
rules describing a mapping from source to target schema.
For data analysis, O is again a database instance, while
P represents the database queries. Here, our interest in
complex data analyses comprising e.g. statistical analysis
warrants an extension of the current Chase formalism,
for example with mathematical operators or negation.
In the provenance step, data responsible for the analysis
results is identified using provenance techniques. This
way, reproducibility of those results is guaranteed. To
compute provenance, we invert the Chase rules used in
the previous data analysis step. Here, O refers to the
achieved analysis results. However, privacy guidelines
might prohibit direct access to the raw data, for example
when personal information is concerned. We contribute
to privacy by applying Chase rules (e.g. view definitions)
to the queries used in the analysis step, thereby integrat-
ing them into the latter. By combining different Chase
applications, we contribute to every step of the data sci-
ence pipeline.

1.2. Research Data Management

One of the real world application areas motivating our
study is research data management. Many of our use
cases originate from our long term co-operation with
the Institute for Baltic Sea Research (IOW). Here, repro-
ducibility of published research results is a requirement
for good scientific conduct. However, the schema of
recorded data changes over time. Thus, while tracing
back results to the responsible data, we need to account
for schema evolution. After identifying involved tuples,
scientists provide them - and not the entire data set - to
an external reviewer.

1.3. Negation in Data Analysis

We interpret data analysis as a series of database queries,
which in turn are expressed as Chase rules. In particu-
lar, we are interested in statistical analysis of scientific
data which often contains negation. On the one hand,
negation might be explicit part of the analysis algorithm,
for example in the form of set difference. On the other
hand, negation can be implicit part of basic aggregate
functions, for example the maximum function. However,
negation is not part of the standard Chase.

1.4. Contribution

Using the Chase algorithm, we solve interconnected chal-
lenges of the data science pipeline in a coordinated man-
ner. In this work, we study how previous results con-
cerning provenance calculation are affected if we extend
the Chase with negation. While the Conditional Chase

we describe here has been studied in previous theoreti-
cal works [4], connecting it to Chase negation is rather
uncommon. Furthermore, this extension allows the cal-
culation of instance-based why-not provenance. While
the computation of this provenance is already possible
with specialized algorithms, our Chase based solution is
directly integrated into a framework solving a multitude
of other data science challenges, for example schema
evolution and query transformation.

2. State of the Art

The Chase is a fixpoint algorithm incorporating a set
of rules, the Chase parameter, into a Chase object. In
this work, the Chase parameter is a query or transforma-
tion rule encoded as a tuple generating dependency (tgd),
while the Chase object is a database instance. Tgds are
logical implications of the form ¢(Z, i) — 37 : ¥(&, 2).
Here, ¢ and 1) are sets of relational atoms over the de-
picted variables. If the tgd encodes a query, we often
existentially quantify 7, while at the same time prohibit
existentially quantified variables Z in the rule head (its
right-hand side). The inversion of a tgd is the logical
implication ¥(Z, Z) — 37 : ¢(&, 4).

If there is a homomorphic mapping from a Chase rule’s
body (the left-hand side) to the Chase object and the rule
is not satisfied yet, the rule head is materialized under the
homomorphism, generating a set of new tuples. Each ex-
istentially quantified variable of the head contributes to a
fresh marked null values 7; (¢ € N). The Chase continues
until a fix point is reached, however, termination is not
guaranteed if existentially quantified variables in the rule
head are allowed and the rules are cyclic. Still, several
termination tests guarantee Chase termination even on
cyclic rule sets. The Conditional Chase described later in
this work for instance terminates on richly acyclic rule
sets in polynomial time [4].

In general, provenance can be seen as meta-data de-
scribing a production process [5]. For our generalizing
research approach, why- and why-not data provenance
are of particular interest. While there are tools (e.g. [6])
computing more detailed provenance information, they
are not applicable to other challenges of the data science
pipeline.

Why-provenance provides tuples — the witnesses — jus-
tifying a certain result. Quite often, for example if tuples
become indistinguishable after projection, there are al-
ternative sets of tuples witnessing the same result. Thus,
a witness basis is the set of all sets of witnesses. Alterna-
tively, inverting the query might provide a single generic
representation for alternative witness sets (compare the
relaxed Chase-inverse in [7]).

Why-not provenance explains the absence of ex-
pected result tuples. This can take three different forms:



Instance-based explanations, query-based explanations
and refinement-based explanations [5]. Since the Chase
algorithm allows neither tuple deletion nor update of
constants, we restrict ourselves to explanations based on
the insertion of tuples into the database. Similar to our
approach, the algorithm described in [8] computes why-
not provenance using conditions and c-tables. However,
those concepts are not used in the context of the Condi-
tional Chase discussed in this work. Most importantly,
this solution is restricted to provenance and isolated from
other challenges of the data science pipeline.

Even though [9] formalizes both evolution rules and
conjunctive queries using tgds, only basic analysis op-
erations can be realized this way. Furthermore, only
non-recursive queries are actually inverted using the
Chase.

3. Implementation

With the Chase implementation ChaTEAU, different ap-
plications of the Chase are combined in a in a single
toolkit [9]. Currently, extensions like generalized nega-
tion on database instances and queries under the condi-
tional semantics discussed in this work are integrated
into the software.

4. Negation on Instances

While we regard the Chase as a universal algorithm han-
dling different kinds of parameters and objects in a uni-
fied manner, semantics of negation still depends on the
Chase object. For the Chase on instances, negation in a
Chase rule requires the absence of a certain set of tu-
ples. In contrast, negation in Chase rules applied to
queries requires the presence of an explicitly negated
set of atoms in the query. As a consequence, we differ-
entiate between negation as a negated boolean subquery
(from integrity constraint to database instance), and nega-
tion as a boolean subquery with inverted direction (from
query to integrity constraint). In this work, we will focus
on the first case, since it is more relevant the use case data
provenance. After finding a term mapping h for all vari-
ables Z of the positive body of an integrity constraint, we
select the atoms ¢(Z, %) of a negative body =3y : ¢(Z, %)
(that is, a negated conjunction of relational atoms). If the
result of the boolean query ¢(Z, ) — () is (), we reject
h, otherwise, we continue with the next negative body
or complete the Chase step (e.g. generate some tuples).

In this work, we will focus on semi-positive negation,
that is, negation of base relations. Otherwise, we can
no longer guarantee a single generic witness base and
calculations become rather complicated.

5. Conditions and Certain Answers

Standard Chase (without negation) operates under cer-
tain answers semantics. Interpreting (marked) null values
as unknown, but existing values, we consider only re-
sults justified under any valuation of null values with
concrete constants. In general, we treat null values as
constants unequal to any constant in the database in-
stance. However, this naive interpretation is insufficient
for negation under certain answers semantics. Consider
rule 71 which is triggered if null value 71 equals con-
stant c. Under naive interpretation, 7, is not equal to ¢
and no result is generated. Let there be a second rule o
which would be blocked by 71’s result. Clearly, 72 should
not be triggered under certain answers semantics since
there is a valuation of null values (71 + ¢) not justifying
the generation of this tuple. Therefore, some tuples are
only generated under certain conditions. For this paper,
we define conditions as conjunctions of logical compar-
isons x10z2 (0 € {=,#},z; € CONSTUNULL), with
CON ST being the set of all constants of the domain
and NULL being the set of all marked null values. In the
previous example, the blocking tuple would be generated
under condition 71 = ¢, while the result of r3 is gener-
ated under condition 771 # c. If conditions of equivalent
tuples form a tautology (e.g. 71 = c and m1 # c), those
tuples exist under certain answers semantics.

6. Provenance

6.1. Why Provenance

As mentioned before, we can use the standard Chase
algorithm (without negation) to calculate the why-
provenance of query results. The notion of why-
provenance used here corresponds to the relaxed Chase-
inverse found in [7].

For this, we invert the Chase rules that created the
result by switching the rule’s head and body. Attribute
values not passed to the result correspond to existentially
quantified variables of the inverted Chase rule. Applying
the inverted query to the result generates the minimal
witness basis [9]. This set of tuples is sufficient to create
the original query result. However, it is usually smaller
than the complete instance and contains marked null
values in places irrelevant for the query.

Extending this established algorithm with semi-
positive negation is often without consequences. How-
ever, the same witness might play different roles during
query execution. Consider query g on instance [:

I ={R(1),R(2),5(2)}
q :R(z) A R(y) A =S(y) — (2,9).

If we ignore the semi-positive negation of S, the wit-
ness basisis { R(1), R(2)}. Indeed, even if we materialize



the image of ¢’s negative body, we only learn that S(1)
cannot exist, but we learn nothing about S(2). Conse-
quently, we can justify the existence of all previously
published results {(1, 1), (2, 1)}, but we could addition-
ally justify the result (2, 2). The absence of this expected
result from the published result could be explained us-
ing why-not provenance. However, the instance-based
why-not provenance presented in this work is restricted
to insertions - clearly, there is no way to generate (2, 2)
by inserting additional tuples into the database.

6.2. Why-not Provenance

Similarly to why-provenance, why-not provenance can
be computed using the witness basis generated by the
Chase. This witness basis (in the context of why-not
provenance known as "‘generic” witness basis) includes
the query’s materialized negative bodies. Since we are
interested in witnesses without representation in the
database, we insert artificial representatives for each
(positive) witness into the database. We interpret the
witness basis as a query returning the tuple identifiers
and apply it to the database. Every generated result tuple
corresponds to one possible why-not explanation. We
select results referring to a minimum of artificial repre-
sentatives and return the respective representatives as
the why-not explanation. If a witness mapped to its own
artificial representative and a witness mapped to a tuple
from the original database share an existentially quan-
tified variable, this variable is mapped to a marked null
value (from the artificial tuple) and a constant (from the
original tuple). The Conditional Chase allows this map-
ping under the condition that null value and constant are
equal. If those equality conditions are consistent, we in-
terpret them as term mappings and substitute null values
from explanation tuples with constants from the original
database instance. A more detailed description of the
algorithm outlined above can be found in [10].

7. Future Work

Currently, we only consider semi-positive negation. Oth-
erwise, two queries triggering each other could lead to
nested negation in the generic witness basis, which re-
solves to a disjunction of generic witnesses. However,
the use cases motivating our work are not restricted to
semi-positive negation or even stratifiable rule sets, so
an extension of our framework is necessary.

In this work, the Chase object is a database instance.
However, other steps of the data science pipeline require
a query to be the Chase object. While Chase semantics
are very similar for both types of objects, semantics of
negation differ distinctively.

8. Conclusion

The Chase algorithm solves a multitude of data science
challenges in a unified manner. Provenance, for instance,
can be calculated while keeping track of schema evolu-
tion. However, real world applications require extensions
of the algorithm. In this work, we explain computation
of why- and why-not provenance of conjunctive queries
with semi-positive negation using the extended Chase.
While we chose the Conditional Chase to realize certain
answers semantics with negation, this decision was ad-
vantageous for the explanation of why-not provenance
even in the absence of negation.

Acknowledgments

This work was supported by a scholarship of the Landes-
graduiertenférderung Mecklenburg-Vorpommern.

References

[1] A.V.Aho,Y. Sagiv, J. D. Ullman, Efficient optimiza-
tion of a class of relational expressions, ACM Trans.
Database Syst. 4 (1979) 435-454.

D. Maier, A. O. Mendelzon, Y. Sagiv, Testing impli-
cations of data dependencies, ACM Trans. Database
Syst. 4 (1979) 455-469.

A. Deutsch, A. Nash, J. B. Remmel, The chase revis-
ited, in: PODS, ACM, 2008, pp. 149-158.

G. Grahne, A. Onet, On conditional chase termina-
tion., AMW 11 (2011) 46.

M. Herschel, R. Diestelkdmper, H. Ben Lahmar, A
survey on provenance: What for? what form? what
from?, VLDB J. 26 (2017) 881-906.

P. Senellart, L. Jachiet, S. Maniu, Y. Ramusat,
Provsql: Provenance and probability management
in postgresql, Proc. VLDB Endow. 11 (2018) 2034-
2037.

R. Fagin, P. G. Kolaitis, L. Popa, W. C. Tan, Schema
mapping evolution through composition and inver-
sion, in: Schema Matching and Mapping, Data-
Centric Systems and Applications, Springer, 2011,
pp. 191-222.

M. Herschel, M. A. Hernandez, Explaining missing
answers to SPJUA queries, Proc. VLDB Endow. 3
(2010) 185-196.

T. Auge, M. Hanzig, A. Heuer, Prosa pipeline: Prove-
nance conquers the chase, in: ADBIS (Short Papers),
volume 1652 of Communications in Computer and
Information Science, Springer, 2022, pp. 89-98.

A. Gorres, A. Heuer, Computing Provenance Us-
ing the Negated Chase, Technical Report CS 01-23,
Institut fiir Informatik, Universitat Rostock, 2023.
Extended version of this work.



	1 Introduction
	1.1 Data Science Pipeline
	1.2 Research Data Management
	1.3 Negation in Data Analysis
	1.4 Contribution

	2 State of the Art
	3 Implementation
	4 Negation on Instances
	5 Conditions and Certain Answers
	6 Provenance
	6.1 Why Provenance
	6.2 Why-not Provenance

	7 Future Work
	8 Conclusion

