Termination and Confluence of an Extended
CHASE Algorithm

Andreas Gorres
Supervised by Prof. Andreas Heuer

Computer Science Department, University of Rostock
18051 Rostock, Germany
andreas.goerresQuni-rostock.de

Abstract. Many requirements of systems managing and analyzing large
volumes of data are interconnected and should therefore be realized
together. In this research project, we use a fundamental algorithm of
database theory — the CHASE — to address those requirements in a uni-
fied manner. While highly expressive, the language of the CHASE is still
inadequate to formulate many problems of practical importance. Ex-
tending the CHASE with additional features would increase its range of
applications, but might jeopardize its key features confluence, safe ter-
mination and efficiency.

In this work, we demonstrate that calculating basic linear algebra op-
erations with the CHASE is feasible after extending the algorithm with
negation and a restricted set of scalar functions. We discuss how conflu-
ence and termination of the CHASE are influenced by these extensions.

Keywords: CHASE - Data Science Pipeline - Termination - Confluence
- Efficieny - Relational Algebra - Linear Algebra - Negation.

1 Introduction and Motivation

While processing large amounts of data is a traditional part of database manage-
ment, big data analytics becomes more and more ubiquitous. Especially applica-
tions like the Internet of Things generate large amounts of information, opening
up new areas of application for classic database algorithms, e.g., analyzing big
data by extended database languages, such as linear algebra extensions to rela-
tional algebra.

Our research is mainly based on two application areas: Research data man-
agement and smart assistive systems. Use cases for research data management
result from our long-time cooperation with the Institute for Baltic Sea Research
(IOW). Resulting from this research, we gain insights into the (e.g. statistical)
data analysis operations used in real world applications. Furthermore, the his-
torical development of the used database is base for our research on schema
evolution and on database transformation operations. Basically, published re-
search data referring to a historical database schema should be reproducible
even in the future. To allow the reproduction of results, the involved tuples need



2 A. Gorres

to be saved, not the entire database of raw measurement data. Identifying those
tuples motivates our research on provenance. However, simply publishing the
entire used data set is not always possible. Especially medical data might con-
tain personal information, resulting in the problem to guarantee privacy while
still allowing the reproduction of results. This problem is even more pronounced
in our second application area, smart assistive systems. The behavior of a user,
e.g. a patient, is observed by a large amount of sensor data, so there current
activities and intentions can be predicted. If parts of the analysis can be done
on an early level of computation, in a completely distributed manner near the
sensors or even by the sensors themselves, collecting personal information on a
central server is no longer needed. This not only results in more privacy (privacy
by design), but even in a more efficient, parallel evaluation of data. As before,
our need for privacy counteracts our interest in reproducibility. However, trac-
ing back results to the original data allows us to focus on a small amount of
sensors having an actually significant influence on the calculation. This way, we
could not only increase efficiency by disregarding unneeded data, but even real-
ize privacy. Ideally, our three main objectives provenance, privacy and efficiency
exhibit synergistic effects if we include them into a unified framework.

In our research, we try to realize those features using a fundamental algorithm
of database theory: the CHASE.

2 Formalizing Problems in Terms of the CHASE

More than forty years ago, the CHASE algorithm was introduced in two seminal
works [3,10]. Right from the start, seemingly unrelated use cases — query opti-
mization and schema construction — were examined in a unified way . Later on,
the number of application areas (for slightly adapted variants of the CHASE)
became even broader and the concept of “universal solution” was introduced to
describe the connection between the different problem cases [8]. In this tradi-
tion, we understand the CHASE as a universal algorithm that is able to process
a variety of parameters (e.g. integrity constraints, privacy constraints, and view
definitions) into a variety of database objects (e.g. database instances or database
queries).

Formally, let P be a parameter and O be an object, then the CHASEp(O)
applies the parameter P to the database object O. If P is a query and O a
relational database, the result of the CHASE is the result relation of the query
P. If P are integrity constraints and O is a database query, the result of the
CHASE is a query implicitly satisfying all the constraints, which is needed, e.g.,
to apply semantic query optimization techniques. We refer to the result of the
CHASE as target T = CHASEp(O).

For our research in research data management and smart assistive systems,
we need to combine the following steps of a data science pipeline: (1) Design-
ing and evolving database schemas; (2) Analyzing data by means of a rela-
tional database language, extended by linear algebra operations; (3) Support-
ing reproducibility of the data analysis by data provenance techniques such as



Extended CHASE Algorithm 3

why-provenance; and (4) Guaranteeing privacy (as well as integrity) constraints
within the analysis and reproducibility steps. To be able to unify and combine
these four tasks, we use the CHASE algorithm in the following ways.

— To describe the evolution of database schemes, we interpret P as a schema
mapping and O as the source database schema, resulting in the target
database schema T after the evolution.

— To perform an extended query as a representation of a data analysis, we
interpret P as a query and O as the relational database, resulting in the
target relation, i.e. the query result 7'.

— To calculate the why-provenance of the query used for the data analysis, we
interpret the query result T as the new database object O and invert the
query operations to represent the provenance query, i.e. the new parameter
P. The new result T of this provenance query is a sub-database of the original
database, the set of witnesses for the data analysis.

— To satisfy all the constraints, such as integrity or privacy constraints, while
performing the data analysis by an extended relational query, we use the
extended query as the database object O and the constraints as the CHASE
parameter P. The result of the CHASE is a query respecting all the con-
straints in P.

The CHASE can be interpreted as a rule system, applying different rules in P to
the logical representation of O. Since P is a set of rules, there is no fixed order
in which the rules are applied to the object O. So we have the basic problems of
termination (does the application of rules stop?) and confluence (if we apply
the rules in a different order, is the algorithm always calculating the same re-
sult?). As a third problem, we have to check the efficiency of the CHASE, since
in general the CHASE is often of higher complexity than specialized solutions
for the above problems considered in isolation.

Even though, the classical CHASE is too restricted for most practical ap-
plications and therefore needs to be extended. In the classical CHASE, P and
O are simple formulas of first-order predicate logic. For example, if P or O are
used as database queries, the queries are restricted to conjunctions of positive
select-project-join queries, with equality tests being the only permitted select
operation.

3 Main Tasks of the PhD Thesis

For our PhD project, we define two main tasks: Unification and extension of the
CHASE. As we described before, parameter and object of the CHASE depend
on the application area. Even though the same parameters (e.g. integrity con-
straints) could be used for different CHASE objects, the actual behavior of the
algorithm differs. For example, the same constraint might lead to the creation
of an existentially quantified variables in a query and to the introduction of a
new null value in a database instance. Most implementations of the CHASE al-
gorithm are tailored towards a certain use case, for instance query optimization



4 A. Gorres

or database repair. Even in this paper, we focus on the CHASE on database
instances. Ultimately, the different variants of the CHASE need to be unified,
resulting in a truly universal algorithm.

To address real life use cases in an effective manner, the CHASE needs to
be extended, for example with negation, functions and arithmetic comparisons.
However, extending the CHASE might influence its termination behavior, conflu-
ence and efficiency. Concerns regarding those properties are not restricted to the
extended CHASE. Originally, CHASE parameters were restricted to functional
dependencies and full inclusion dependencies, which ensured a finite and unique
CHASE result. Once embedded dependencies were introduced to the CHASE,
termination and confluence were no longer guaranteed. Still, those problems of
the original algorithm can be addressed, for example by testing for termination
beforehand [5]. There were attempts to extend the CHASE in the past (sec-
tion 4). However, those extensions are usually tailored towards a specific use
case and not the universal CHASE. The semantics of most CHASE extensions
depends on the CHASE object: Negation in a CHASE parameter refers to tu-
ples absent from a CHASE instance, but to explicitly negated atoms in a query.
Furthermore, it is unclear if the results of a specialized extended CHASE (e.g.
annotations encoding conditions for certain tuples) can be interpreted by the
next step of data processing.

As described in section 2, the second step of the data science pipeline consid-
ers linear algebra operations as an extension of relational database languages. At
the end of this paper, we present a simple CHASE program calculating matrix
addition. Using this simple example, we explain the procedure of the CHASE
and demonstrate the necessity for two CHASE extensions, negation and scalar
functions. Furthermore, we examine why the presented program is confluent and
terminates. In future works, we plan to evaluate practical effectiveness of the de-
scribed extended universal CHASE based on a prototypical implementation.

4 Related Work

Previous efforts to extend the CHASE focused on arithmetic comparisons and
negation. Along the way, complexity and termination behavior of these CHASE
variants were examined. In contrast, arithmetic functions seem to be of lesser
interest for current CHASE research. In [2], a CHASE variant extended with
arithmetic comparisons is used to describe data exchange. This AC-CHASE tree
considers all possible orders of null values, therefore generating an exponential
number of possible results. In a similar manner, [5] uses the C-CHASE tree to an-
swer queries with negation on ontologies. Recently, [7] simulated the disjunctive
CHASE with the non-disjunctive variant of the algorithm. This way, disjunc-
tive properties of arithmetic comparisons and negation can be described using
the standard CHASE. However, this solution is not guaranteed to terminate in
polynomial time and is therefore not necessarily more efficient than the tree-like
CHASE variants. In fact, if we restrict the AC-CHASE to certain combinations
of arithmetic comparisons, we preserve the so called homomorphism property,



Extended CHASE Algorithm 5

thereby achieving polynomial data complexity of the terminating CHASE. This
result extends to other application areas of the CHASE, like query optimiza-
tion [1].

5 The CHASE Algorithm

The CHASE is a fixpoint algorithm incorporating CHASE parameters into ob-
jects, so that the resulting objects implicitly contain the parameters. CHASE
parameters are expressed as logical implications. For equality generating depen-
dencies (EGDs) and tuple generating dependencies (TGDs), a general algorithm
can be found in [6]. In this work, we focus on TGDs:

TGD :¢p(x,y) = 3Z : Y(x, Z)
EGD :¢(x) = w1 = x2; 71,22 € .

In the next subsections, we extend the general schema of a TGD with negation
and simple scalar functions. Similar to [5] and unlike [8], we do not restrict
negation to single atoms. CHASE objects, which include database instances and
queries, are encoded as sets of relational atoms.

The CHASE consists of a sequence of CHASE steps. In each step, a ho-
momorphism (the trigger) between all atoms of a (nondeterministically chosen)
CHASE parameter’s body and some atoms of the CHASE object is defined. If
the image of the TGD head atoms (possibly extended for existentially quantified
variables) is not present in the CHASE object, an image of the head atoms is
materialized in the CHASE object. For each existentially quantified variable, a
fresh marked null value (or existentially quantified variable) is generated. The
CHASE continues until a fixpoint is reached. If the TGDs are cyclic and exis-
tentially quantified variables are present in any head atom, the CHASE might
not terminate. The problem of CHASE termination is, in general, undecidable,
but well researched [5].

5.1 Introduction to CHASE Extensions Using Matrix Addition as
an Example

Basic linear algebra operations are fundamental for machine learning algorithms
used in big data analytics. In the following, we show how matrix addition can
be defined using extended TGDs, a necessary requirement for reasoning about
the algorithm with the CHASE. Let us consider matrices A and B, encoded in
relations A(I,J,V) and B(I,J, V). Coordinates of a matrix field are encoded in
attributes I and J and the field value in attribute V. Matrix AB encodes the
sum of the matrices A and B.

A B AB

() () ()



6 A. Gorres

To illustrate the basic working of an extended CHASE algorithm, we define
a simple program calculating matrix addition:

r1 :A(i1, g1, v1), B(i1, j1,v2) — AB(i1, j1, sum(vi, va))
2 :A(ilmjhvl)a_‘(zlvé : B(i17j17‘/2)) — AB(ilvjh’Ul)
r3 :=(3Vh - A(in, j1, V1)), B(in, j1, v2) — AB(i, j1,v2).

The only new values created by the standard CHASE are marked null values
(and variables). In addition to this, we can generate new constants if we allow
scalar function terms, like sum(), in the TGD head.

We define a homomorphism from the body of r; to the matrix fields with
the coordinates (1,1) in both matrices. Consequently, the CHASE generates a
tuple AB(1,1,2), the image of r1’s head. Notice that we immediately calculated
the result of the scalar function instead of generating a nested term in AB. Of
course, by saving the nested function term in relation AB, we might be able to
optimize the term later on using arithmetic transformations, but the CHASE is
ill-equipped for this kind of optimization.

While r; is sufficient to calculate the result of matrix addition if all matrix
fields are represented by tuples in the database, this is not the case if we use the
compressed database representation of matrices defined in [11], which allows a
more efficient treatment of sparsely populated matrices. Here, fields with value
zero are represented by missing relational tuples. Therefore, the tuple B(2,2,0)
is absent from this representation and we are unable to find a homomorphism for
the coordinates (2, 2). Consequently, no tuple with those coordinates is generated
in AB, even though we expect this field to have a value of one. In [11], this
problem is addressed using an outer join. We adapt this approach with additional
TGDs ry and r3 containing negation.

After defining the mapping {i; — 2,71 — 2,V; — 1} for the positive atoms
of ry, we rewrite the negative atom into the the following boolean subquery
IV, ¢ B(2,2,V5) — () by substituting the variables ¢; and j; with their re-
spective mappings. A boolean query is basically a TGD whose head consists of
an empty tuple. Since we are unable to define a consistent homomorphism for
the boolean query, we are unable to generate this tuple, which is interpreted as
“false”. Consequently, we proceed by materializing the image of the head atom,
AB(2,2,1). Notice that the body of a boolean query might have multiple atoms
and can contain existentially quantified variables (in this example V3). Variables
in negated atoms not present in any positive atoms are known as unsafe. In
this example, we could avoid unsafe negation by defining a view that projects
over attributes containing the safe variables. However, by interpreting negation
as a negated subquery (with explicit quantification of unsafe variables) we show
that multiatomic unsafe negation does not pose a challenge to the CHASE on
database instances.

5.2 Confluence and Termination of the Example

While negation is often (even in the previous example) restricted to single atoms
(negative subgoals) and safe variables, exceeding those limitations is surprisingly



Extended CHASE Algorithm 7

natural for the extended CHASE. In fact, the CHASE algorithm already utilizes
this kind of generalized negation when testing trigger activity. After finding a
valid homomorphism for the body atoms of a TGD (the trigger), we test if the
image of the head atoms is already present in the CHASE object. This active
trigger test can be interpreted as an implicit multiatomic negation, treating the
TGD head as a negated conjunction of body atoms. For this, existentially quan-
tified variables from the TGD head are implicitly renamed and act as unsafe
variables. While the CHASE on full TGDs is confluent, the general CHASE al-
gorithm is not. One main reason for this behavior is the previously described
test for trigger activity. Since this test can be expressed using negation, it is
unsurprising that general negation leads to additional cases of non-confluence.
If a TGD is blocked by tuples a second TGD generates, the order in which both
TGDs are applied directly influences the result. This remains valid even if we re-
strict ourselves to stratified negation (that is, there are no circular dependencies
between TGDs containing negation). Stratified negation simply guarantees there
is an order of rule application in which blocking TGDs are applied before the
respective blocked TGDs. The presented CHASE program, however, is confluent
since it is “semi-positive”: Only tuples are negated whose relations never appear
in any TGD head.

The main purpose of scalar functions in the given example is the genera-
tion of new constants. In this regard, they have similar effects as existentially
quantified variables in head atoms, which also contribute to the creation of new
values (null values or variables). Similar to existentially quantified variables,
scalar functions might lead to a non-terminating CHASE sequence. However,
adjustment of classical termination tests, like Weak Acyclicity [9], would still
guarantee CHASE termination. Being non-recursive, the given CHASE program
is weakly-acyclic and guaranteed to terminate. However, there is a major differ-
ence between null values and the constants generated by a scalar function: Only
by applying an explicitly defined EGD, we can unify two different null values.
This way, the application of an EGD can terminate a CHASE sequence that
might otherwise be infinite. It might also unify the results of two alternative
CHASE sequences, thereby guaranteeing confluence. For scalar functions, this
unification is not defined explicitly by the CHASE parameter, but by arithmetic
rules instead (e.g. the commutativity of addition). Furthermore, two attribute
values might not even be identical, but converge to the same constant in the
progress of an infinite CHASE sequence.

6 Conclusions and Future Work

In this work, we extended the CHASE on database instances with negation and
scalar functions, exemplified by a simple CHASE program. In a similar manner,
we have defined more complex, but still confluent and terminating programs.
Since these programs are unions of (extended) TGDs, CHASE techniques used
for optimizing unions of conjunctive queries could be used to optimize them.
However, while unsafe negation was smoothly integrated into the CHASE on



8 A. Gorres

instances, it poses a serious challenge to the CHASE on queries. In future works,
we will describe our solution to these problems. Furthermore, we intend to eval-
uate this solution by implementing it into our prototypical CHASE software
ChaTEAU [4].

The CHASE algorithm of classic database theory can be applied to a mul-

titude of problem cases, solving them in a unified manner. In this regard, in-
teractions between the requirements provenance, privacy and efficiency are of
particular interest to us. However, for practice-oriented use cases, extensions of
the algorithm are needed. These extensions might affect efficiency, confluence
and termination of the algorithm in a negative way.
In this work, we illustrated the prospects of an extended CHASE algorithm
with a simple framework calculating linear algebra operations. As a next step
of our research, we will examine how CHASE programs can be modified us-
ing the CHASE algorithm, thereby contributing to the solution of the initially
formulated requirements.

Acknowledgements This work was supported by a scholarship of the Landes-
graduiertenférderung Mecklenburg-Vorpommern.

References

1. Afrati, F.N.: The homomorphism property in query containment and data integra-
tion. In: IDEAS. pp. 2:1-2:12. ACM (2019)

2. Afrati, F.N., Li, C., Pavlaki, V.: Data exchange in the presence of arithmetic com-
parisons. In: EDBT. ACM International Conference Proceeding Series, vol. 261,
pp. 487-498. ACM (2008)

3. Aho, A.V., Sagiv, Y., Ullman, J.D.: Efficient optimization of a class of relational
expressions. ACM Trans. Database Syst. 4(4), 435-454 (1979)

4. Auge, T., Heuer, A.: Prosa - using the CHASE for provenance management. In:
ADBIS. Lecture Notes in Computer Science, vol. 11695, pp. 357-372. Springer
(2019)

5. Baget, J., Garreau, F., Mugnier, M., Rocher, S.: Revisiting chase termina-
tion for existential rules and their extension to nonmonotonic negation. CoRR
abs/1405.1071 (2014)

6. Benedikt, M., Konstantinidis, G., Mecca, G., Motik, B., Papotti, P., Santoro, D.,
Tsamoura, E.: Benchmarking the chase. In: PODS. pp. 37-52. ACM (2017)

7. Bourgaux, C., Carral, D., Krotzsch, M., Rudolph, S., Thomazo, M.: Capturing
homomorphism-closed decidable queries with existential rules. In: KR. pp. 141-
150 (2021)

8. Deutsch, A., Nash, A., Remmel, J.B.: The chase revisited. In: PODS. pp. 149-158.
ACM (2008)

9. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and
query answering. Theor. Comput. Sci. 336(1), 89-124 (2005)

10. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies.
ACM Trans. Database Syst. 4(4), 455-469 (1979)

11. Marten, D., Meyer, H., Dietrich, D., Heuer, A.: Sparse and dense linear algebra for
machine learning on parallel-rdbms using SQL. OJBD 5(1), 1-34 (2019)



