Pre-Diploma Thesis

Extending A Data Replication Technique Using DatalLink

Institute for Computer Science
UNIVERSITY OF ROSTOCK
Major: Databases
Author: Guido Rost
Tutor: Holger Meyer

Revision: June 27, 2000

Contents

1

2

Introduction

Overview of Replication

2.1 Ensuring Data Consistency

2.2 Copy-Update Methods
221 Voting
2.2.2 Read-One-Copy Based Methods
2.2.3 ROWA (Read-One-Write-All)
2.24 ROWA-A(Available)
2.2.5 Absolutistic methods o L.
2.2.6 Summary e

2.3 Net Partitioningo o oL
2.3.1 Optimistic Methods
2.3.2 Pessimistic Methods

IBM’s Data Propagator Relational
3.1 Classifying DpropR L.
3.1.1 Synchronous—Asynchronous replication
3.1.2 Mechanism (Log-File — Trigger)
3.1.3 Copy-Update method
3.1.4 Collision detection
3.2 Overall architecture
3.3 Replicated Data
3.4 Capture
3.5 Apply ..
3.6 Database Protocol Based Connection

Overview of Data-Links
4.1 Overall architecture
4.2 Functionality oo

Description of The Problem

5.1 Data Links And DRDA
5.2 Data Links And The Log Record
5.3 Data Links And Apply

The Prototype

6.1 Tdea
6.2 Design architecture o Lo
6.3 Internal Design

10
10
11
12
13
13
14
15
17
18
19

21
22
23

25
25
26
26

6.3.1 Using UDF for The File-to-BLOB conversion UDF
6.3.2 Retrieve the file content
6.3.3 File-to-BLOB conversion
6.3 DatainCDtable
6.3.5 How to do the server-to-target file mapping
6.3.6 Stored procedure to materialize the file
6.4 Limitation and Potential Performance Issues

7 Implementation
7.1 Description of the implementation
7.2 Performance measurements
7.2.1 Replication scenario
7.2.2 Resultsof thetest

8 Conclusion and recommendations

IT

29
30
30
30
31
33
34

37
37
39
39
40

43

ITI

List of Figures

SO W N+

Overview of a replication process 16
Architecture of Capture 18
Architecture of Apply 19
Overview of Data Links Manager 23
Architecture of Data Links Manager 24

Architecture for the Data-Link replication prototype 28

1Y

List of Tables

O~ O Ot i W N =

Syntactic Copy-Update-Methods 9
Sample of IBMSNAP_SERVER_MAP table 32
Sample of IBMSNAP_PREFIX_MAP table 33
Rows of the IBMSNAP_SERVER_MAP table. 40
Entries of IBMSNAP_PREFIX_MAP table 40
Time for UDF 41
Performance of replicating Data-Links 41

Comparing ftp access only and prototype 42

1 Introduction

The Replication of data is a technique for achieving better performance and
fault-tolerance in distributed database systems. It’s idea is to access only
local data or a fast accessible nearby copy. That gives the opportunity of
continuous working in case of network failures or no network connection at all.

Database replication has become an increasingly exploited technology.
It is an important technique for ensuring high availability. Commercial
database vendors such as IBM and Sybase have supported replication for a
number of years. But replication is by no means a ”done deal”. It is still an
area of active research.

IBM has developed a new technology, called Data-Links, which extends
the Relational Database Management System (RDBMS) to data stored in
external operating system files. Data-Links provide the vital integration
between the RDBMS and the file system through extensions to a database.
This paper is about a prototype on how to replicate this new Data-Link
datatype and its corresponding data in the file system using IBM’s DB2
Universal Database (UDB).

In todays business, most of the data is still living in file systems and
not in a formal DBMS environment. The sheer volume of data stored in
files is much bigger than data in a DBMS. And it continuously grows in a
much faster rate. This difference in growth rate increases with the advent
of Internet/Web applications with its huge amount of multimedia data. To
keep this data in the file system and not moving them in an RDBMS is
useful and mostly necessary. These files are especially unstructured and
semi-structured data such as images, documents, engineering drawings,
email massages, video clips, presentations, spreadsheets, etc. They are very
often related in some way to traditional data stored in the RDBMS.

These applications have good reasons for storing their data in the file
system but need robust management capabilities without having to move
those data into the DBMS. For example Internet organizations want to pro-
vide users with access to a variety of information in many different formats
and engineering companies need their drawing files for their computer aided
design (CAD/CAM) applications. All of these applications clearly illustrate
the long-term challenge for an comprehensive content-management system
that integrate external data and files with traditional business data. IBM’s
Data-Link technology is covering exactly these requirements.

The following chapter 2 gives an overview of the principles of data repli-
cation and will look at some replication methods more detailed. Afterwards,
chapter 3 introduces IBMs replication product DPropR. First, it tries to clas-
sify the product by comparing the mechanisms it based on. Then the func-
tioning of DpropR will be explained. In chapter 4, the feature Data Links
of DB2UDB is introduced. In chapter 5, the problems the prototype comes
with are explained and disscussed. The prototype itself will be presented and
discussed in chapter 6. Chapter 7 gives an overview of the implementation
of the prototype, then the perfomance will be disscussed by executing per-
formance measurements. Chapter 8 concludes of what was done and what
has to be done to make the prototype more usable in a real world scenario.

2 Overview of Replication

In the last years, distributed database systems became more important. This
trend is recognizable even to the more classical database applications using
client-server-applications instead of mainframes. Distributed databases
are used in many new application areas as mobile computing, work-flow
management, concurrent engineering or data warehousing too.

An assumption for better fault tolerance and performance in a distributed
system is the replication of data. That ensures an undisturbed working
environment even with network failures, and increases performance. On the
other hand it increases the risk of data inconsistencies and efforts of update
operations. In order to find an appropriate solution for this trade-off many
methods for the management of replicated data have been proposed in the
literature.

This chapter introduces different replication methods and surveys their
principles. It also mentions advantages and problems of the presented
methods.

The content of this chapter is based to a large extent on [1].

2.1 Ensuring Data Consistency

A very important requirement for replication methods is to ensure data
consistency. To describe the correctness of replicated databases, the term of
One-Copy-Serializability is mostly used. If a schedule is one-copy-serializable
it keeps the replicated database in the same consistent state as it was before.

One-copy-serializability:

A replication method is one-copy-serializable if the transaction processed
over a replicated object residing in the same initial state lead to the same
object value as if these transaction were applied to a non-replicated object.

That means that there is one definite value assigned to a replicated object
at any time. A replication method which complies with the requirement of
One-Copy-Serializability must ensure the following points:

1. There can be only one successful write operation at a given time on an
replicated object.

2. Two read operations executed from any computers at any time deter-
mine the same object value of the replicated object. And that object
values represent the update of the last successful write operation.

The requirement is realizable in two ways:

e syntactic methods
Data integrity at syntactic methods depends only on the order of the
accessing transactions, the order of read — write operations.

e semantic methods

Semantic methods make use of the semantics of transactions, for in-
stance the possibility of changing the processing order of two opera-
tions (commutativity). The correctness of some semantic approaches
can only be defined using integrity conditions of the database. Other
approaches use special knowledge of the database.

Semantic methods are basically not as general applicable as syntactic
methods because syntactic methods do not comply with the seman-
tic premises that are needed. On the other hand semantic methods
are very attractive because of their semantic knowledge, it can help to
reduce communication and synchronization work and that means net-
work traffic. The semantic knowledge can replace the synchronization
over all the copies. In best case, it could be possible that only the local
copy needs to be updated because the replication method has semantic
knowledge of the current update. On the other hand the number of
copies which to update asynchronously can get very high and it can
be very complicated up to not possible to read a consistent database
value.

In replicated databases, you must define the amount of copies which to
update synchronously with the commit of a transaction and which to update
asynchronously. There must be at least one copy which will be updated
synchronously. The more copies you update synchronously the more copies
will be in a consistent state. On the other hand that means that there is
more work to apply before a transaction commits and the possibility of
failures that can occur before the commit is higher too. For instance if one
copy is not reachable and therefore it can not be updated synchronously.
In this case the transaction commit will be blocked. Asynchronous updates
don’t have that problems and because of that they don’t block a transaction
commit,.

There are several copy-update methods that try to solve the problem that
synchronous replication comes with. To have always the necessary replicas

available is a strong requirement for a transaction commit. But that’s not
always the case.

Depending on the update method the amount of copies which have to be up-
dated synchronously varies. It can be only one copy updated synchronously
for absolutistic methods (introduced below) up to as most as possible (all if
possible) in Read-One-based methods.

In the following the most common syntactic copy-update methods are
introduced and how these methods meet the requirements above is discussed.

2.2 Copy-Update Methods
2.2.1 Voting

Voting is a democratic approach. The synchronization of accesses to each
copies will be done by voting. Every copy gets a certain amount of votes,
mostly one. A transaction is allowed to access an object if there is a quorum
of copies which agrees to access the object.

There are often used different quorums, quorums for read operations @z
and quorums for write operations Q. If the following overlapping rules
are complied with for choosing read and write quorums data inconsistencies
cannot occur anymore(see 2.1 on page 3):

e write/write - overlapping rule:
2% Qw > ¥ over all votes

e write/read - overlapping rule:
Qr + Qw > X over all votes

The write/write overlapping rule ensures that parallel write operations over
one copy will be synchronized. If in addition at least Qy copies will be
updated synchronously with the transaction-commit, an update operation
will always process on the current object value. That together with the
write/read overlapping rule guarantees that there is at least one current
copy in every read operation quorum.

To determine the current copy(see 2.1 on page 3) you can use timestamps
or version numbers. The use of timestamps brings the advantage that
the write/write overlapping rule is no longer needed because the update
transaction will be synchronized by using the order of the timestamps.

The amount of necessary votes for a read and write quorum can be chosen as
needed. The Majority-Consensus method requires the majority of votes for
a read and write quorum (Qyw = Qr = N/2+1)L. If you chose a asymmetric

N means the amount of copies/votes and ”/” means the whole-numbered division

distribution of the read and write quorums then you can optimize one access
operation at the expense of the other.

Using the weighted-voting method you can favor one or more copies. If a copy
provides a higher degree of availability than all the other copies you could
assign 2(or more) votes instead of 1 to it. That improves the possibility to
reach a quorum if there is an even number of copies. For instance: If you
replicate an object to 4 nodes you need at least 3 votes. If there is a very
reliable node you can give 2 votes to it. To reach a quorum a additional
vote from another node is now enough.

Voting methods are more expensive compared to absolutistic methods in
a error free scenario because the communication work to get quorum is
very high. On the other hand voting methods do not rely on a single copy
(Primary Copy section 2.2.5) anymore as it is for absolutistic methods which
is important if errors occur. The vote of a lost copy can be replaced by a
vote of another copy without applying any replacing algorithms.

Quorums can be structured and unstructured. For unstructured quorums

there can be any copy used for a quorum in contrast to the structured case
of a quorum. In the case of a structured quorum, copies are ordered in a
logical tree or a grid structure. To get a quorum s votes must be gathered in
each of [level along this structure. The advantage of these methods is that
less copies must be accessed compared to the unstructured case. This can be
very important if the number of copies is high.
Note that quorums can be dynamic or static. This becomes an issue if
a database gets partitionized and there are not enough copies to reach a
quorum. To handle this problem the size of a quorum can be dynamic. In
[1], the following dynamic methods are addressed, for example:

e Dynamic-Voting-Method

e the Tree-Quorum-Method with reconfigurable tree structure

2.2.2 Read-One-Copy Based Methods

Read-One-Copy based methods can be seen as a special case of voting. Here,
it needs only the vote of one copy for a read operation (Qr = 1). This copy
can be the local copy which means a big performance win compared to the
other voting methods.

2.2.3 ROWA (Read-One-Write-All)

This is a read-one based method. It is the basis of all Read-One-Copy
based methods. Write-All means that all of the copies will be updated syn-
chronously. This will be a problem in the case of network losses or database
partitioning and nullifies the advantage of local read operation.

Other approaches try in case of non-availability of any copy to update only
the available copies or switch to another replication method. One of these
methods is the Read-One-Write-All-Available-Copies method.
Read-One-Copy methods are useful if the amount of read transactions is high
whereas failures are rare.

2.2.4 ROWA-A (Available)

This is a read-one base method too. It improves the availability for write
operations of the ROWA approach in case of network failures. As the name
of this method implies, this method will update all copies that are currently
available.

This method is only useful if failures are seldom. In case of failures this
method will invoke hard management work.

2.2.5 Absolutistic methods

The Primary Copy method is a typical representative for these strategies.
One determined copy (primary copy) realizes the synchronization of all the
other copies. When a transaction wants to update an object, it needs the
authorization of the primary copy. The primary copy will also mostly be
the only copy that is updated synchronously. So for every update this copy
must be accessed, which means that every update is based on the current
object value.

Reading operations mostly don’t need to access the primary copy because
they don’t update a object value. Then the best way to read is using the
local copy, that should give the best performance . But this could mean that
the reading transaction does not read the most current object value because
of asynchronous updates. If read transactions access several different objects
it could discover data inconsistencies. This can happen if the update of a
write transaction was applied to only parts of the read objects.

Absolutistic methods in that case does not guarantee one-copy-serializability
for read transactions.

If you need one-copy-serializability for read transactions too then read
transactions can be treated as pseudo-update transactions. But these will

eliminate the advantage of local reading.

The availability of an logical object depends strongly on the availability
of the primary copy. If the primary copy in not available another primary
copy can be determined. To avoid data inconsistencies it must be ensured
that there is only one primary copy for each object at any time. Another
problem of this approach is that every update transaction needs to access the
primary copy. If there are many update transactions this copy could become
the bottle neck of the network. The attractiveness of this method is that it
is quite simple to realize.

2.2.6 Summary

When the question comes up which method to use in order to synchronize
the copies then you should consider the availability and performance of the
systems components. For instance, it is better to use a absolutistic method if
you have a powerful mainframe with 100% availability, but a voting approach
may be better for smaller, less powerful desktop computers with a higher
possibility of failures. In such an environment the possibility to lose the
primary copy is much higher than in the mainframe environment. And it is
important to distribute the replication work to several different computers in
the desktop environment in order to avoid bottle necks. That’s why a voting
approach is more suitable in those configurations.

2.3 Net Partitioning

The availability of data is an important reason for replication. That’s why it
should be possible to access the data even in the case of net partitionings or
node losses. The simple case is if a node is not reachable, then the update will
be processed over it later on. Partitioning of the network is more difficult.
Most of the replication methods can tolerate this. There are two general
assumptions.

2.3.1 Optimistic Methods

These methods assume that inconsistencies are seldom. If there are any, op-
timistic methods assume that these inconsistencies can be resolved. That’s
why it is not necessary to deny access to data in different partitions. Op-
timistic methods differ in how to resolve the current inconsistencies. One
representative is a semantic method, the Data-Patch-Method. For that you

Copy Update Methods
Absolutistic Read One based | Voting
Representatives | Primary Copy ROWA Majority
Consensus
Synchronous 1 all (if possible) | write-quorum
updates
Availability depends on high for read- high (because
availability of transactions/ does not depend
the Primary low for write- on one special
Copy transactions copy)
Administration | low/high(if low high
work errors occur)

Table 1: Syntactic Copy-Update-Methods

have to define rules for conflict resolution on designing the database. Opti-
mistic methods are asynchronous replication methods.

2.3.2 Pessimistic Methods

These methods assume the worst case. If inconsistencies in net partitions
can occur than they will occur. That’s why it is better to reduce access
to the data in order to ensure data consistency. Updates over an object is
only allowed in one partition. Read access to other partitions is allowed. To
join the partitions afterwards will be no problem because updated objects
reside in one partition only. Those can then be synchronized to other par-
titions. All the copy-update methods discussed in this chapter (section 2.2)
are pessimistic methods.

10

3 IBM'’s Data Propagator Relational

The need to provide easy and rapid access to vital data is a major issue
with most companies today. In a typical situation, data is kept in a single
location, and users access the data either remotely or locally. This requires
that they have access to the database server where the data is located when
they access the data. This database access is not always possible. As an
example, take the growing base of mobile users with laptop computers who
require access to company data on the road. They do not have the ability
to connect to the corporate database at all times.

In some situations you may choose to have your own local copy of the data
that you need. This is sufficient as long as the original data do not change.
If the original data is not static, then you have to worry about keeping your
own local copy up-to-date with the master copy of the data. This can be a
tedious and time consuming exercise if you have to make a new copy of the
required data on a regular basis.

You may find that you need to have a history of the changes that have
been made to your data over time. In this situation, a point-in-time picture
of the data will not meet your needs.

With IBM’s Data Propagator Relational (DPropR) you can handle mul-
tiple copies of data. Copies can be generated once or may be resynchronized
on an on-going basis.

The contents of this chapter are based to a large extent on [6].

3.1 Classifying DpropR

DPropR is an log-based change-data replication product that updates the
replicas asynchronously. It features update-anywhere replication and comes
with collision detection and transaction compensation features.

This section tries to classify the mechanisms DB2 DpropR is based on. It can
not be classified in any of the replication methods discussed in chapter 2.2
on page 5 because DpropR is an asychonous replication tool which does not
meet, the requirement that at least one copy must be update synchronously
to ensure data consistency (section 2.1 on page 3).

11

3.1.1 Synchronous—Asynchronous replication

IBM’s Data Propagator Relational is an asynchronous replication tool.
With an asynchronous replicator, the source update is independent of the
replication process while synchronous replication updates at least one replica
synchronously. What methods for synchronous replication are available to
update all copies and to ensure that all replicas are consistent is discussed
in chapter 2.2 on page 5.

With asynchronous replication the users transaction completes when the
local update is completed. The replicator updates replicas only after the
user transaction commits the changes to the local database. The replication
of the updates made by the user may occur moments after the source
transaction, in near real-time, or it may be scheduled for later execution. In
case of DPropR it can be continously, a minute, an hour, a day, a week or
even longer.

With synchronous replication a transaction only commits if the copy or
several copies are updated synchronously. It will not commit if a single
commit of any copy is missing.

The benefit of asynchronous replication is that it minimizes the impact on
the user transaction and increases the robustness of the replication process.
Users can continue with other work as soon as the local database applies the
update, they do not have to wait for updates to be applied to the remote
replicas.

As you can see, these are very practical reasons to use asynchronous
replication. But unlike synchronous data replication asynchronous data
replication does not retain the four properties — atomicity, consistency,
isolation and durability — of the principles of ACID [4] and therefore
it does not ensure data consistency. For instance, there is no isolation
of transactions with asynchronous replication. Transactions could run
in parallel and update an object without any guarantee that it updates
the most current object value. This problem known as lost update anomaly[4].

Benefits of Asynchronous Replication:

e With less processing attached to the user transaction, the user regains
control of the system sooner.

e Users are not effected by network delays or slow remote processors.

e User can continue work even in the event of network or remote database
outages.

Benefits of Synchronous Replication

12

e All replicas remain synchronized and that means consistent. Syn-
chronous replication retains all four properties of ACID.

e The use of two-phase commit eliminates the possibility of data colli-
sions.

Latency

Asynchronous replication introduces a period of latency. This is the time
after a user applies an update to an object locally and before the replicator
applies it to all the replicas. The duration of this time can be defined for
the Apply process for IBM’s DPropR.

Conclusion

There are a lot of reasons in the real world for using asynchronous replication,
especially if you think of scenarios with occasional connected mobile replicas
which only allows asynchronous replication.

And than there is the performance point of view which is an crucial aspect
for the customers. In [3] Robert Goldring said:

” We must go back to the basics and understand that concur-
rency control mechanisms have a role in transaction processing.
A centralized DBMS will run faster if locking is — disabled, but
the results are not — desirable. This, we understand. An asyn-
chronous update replication system is a lot like DBMS that is
run without locks — it runs more freely than a system using two-
phase-commit and multi-side update, but there are problems.”

3.1.2 Mechanism (Log-File — Trigger)

Asynchronous replicators can be either log-based or trigger-based. DB2
Universal Database’s data replication function features log-based change-
capture technology.

A log-based replication mechanism scans the log record maintained by the
DBMS to find changes of data in registered replication tables. The changes
get then captured and replicated to the target tables.

A trigger-based replication mechanism instead embeds code in database
triggers. The database executes these triggers when a user changes data
registered for replication. In theory, a trigger-based replicator could be
synchronous, with the trigger code assuming responsibility for updating the
replica.

13

Since log-based replication is fully asynchronous with users transaction,
there is a period of time after a users update before the replicator becomes
aware of the update. This increases the complexity of collision detection for
symmetric replication (source and destination tables are updateable) .

Benefits of log-based replication

e All ”industrial strength” DBMS’s maintain logs, but not all DBMSs
provide triggers.

e None of the replication process is attached to the user transaction,
hence the user regains control of the system sooner.

Benefits of trigger-based replication

e Vendors usually guarantee upward compatibility of triggers as they
introduce new versions, whereas most vendors do not promise to main-
tain the structure of their log record across different versions. This is
because the log record is considered to be an internal component.

e There is usually small delay between completion of the source transac-
tion and updating of replicas.

e The collision detection process is normally simpler.

3.1.3 Copy-Update method

As mentioned above, IBM’s replication product DPropR works asyn-
chronously. Thats why it’s not possible to compare it with the copy-update
strategies described in chapter 2.2. In chapter 2.2 we discussed different
methods and problems of synchronous updating of replicas. Synchronous
replication ensures data consistency at any time. This is the main argument
for using synchronous replication but it is often not realizable in the real
world (see section 3.1.1).

With DPropR all the replicas you have defined as replication targets will be
updated later on. Data consistency cannot be assured in update-anywhere
replication scenarios. User could update the same object at the same time
or not even using the current objects. Instead you need to detect the incon-
sistencies and compensate them. This is a feature what DPropR offers.

3.1.4 Collision detection

It is not possible to cover all problem scenarios with conflict resolution rou-
tines. Problems with asynchronous replication are fundamental in it’s nature.

14

”Researchers recognize the futility of using conflict resolution
routines to enforce database correctness:

"With each database there is — associated a set of
integrity — constraints. A database state is consistent if
it satisfies the integrity constraints of the system. Thus,
if all the integrity constraints of the system could be ex-
plicitly specified, then correctness could be — ensured,
without resorting to — serializability, by the continuous
monitoring of each transaction to determine that it sees
only consistent database states and that its execution
does not result in a violation of database consistency.
There are, however, numerous problems with this ap-
proach. A system that continually checks if database
consistency is preserved will have poor performance.
Depending on the integrity constraints the above task
may not even be computable. The — ultimate argument
against this approach is that, in practice, not all the in-
tegrity constraints of the — database can be explicitly
— specified”.[2]

The bottom line is: If you rely on automatic conflict reso-
lution routines, you will not be able to successfully audit your
transaction executions. If you do not compensate incompatible
transactions, and their descendants, your replicas will contain
persistent — inconsistent.” [3]

DPropR comes with the features of automatic conflict detection, auto-
matic transaction compensation and automatic compensation of dependent
transactions for an update-anywhere scenario. DB2 DataPropagator pro-
vides three levels of conflict detection: no detection, standard detection, and
enhanced detection. Each level has a numerical value which is stored in the
CONFLICT_LEVEL column of the register control table. You must decide,
based on your tolerance for lost or rejected transactions and performance
requirements, which type of detection to use.

If you want to handle those conflicts you will need a global repair strategy.
This task is left to the application developer.

3.2 Overall architecture

To setup a replication environment you need a data replication source and a
data replication target. You need to determine the source and target tables.

15

One source table can be used as a replication source for several target tables
which can be tables in different databases on different servers. Target tables
must not have a 1:1 relationship to the source tables. They may be enhanced
as compared to the format of the associated source tables. Replication can
"transform” data from the source table to target table in several ways:

e Filter out or subset rows, from the source data to a more meaningful
amount

e Filter out columns of sensitive data which are not appropriate for this
given user

e Columns in the target table may be derived from, or calculated on,
columns in the source table by using SQL aggregation functions. This
is applicable for base aggregate tables (see section 3.3 on page 16) only.

Once the source and target tables are specified you can start the replication
process. This includes two processes. It is Capture and Apply which
perform the replication of the data from the source to the target side(see
Figure 1 on page 16). The Capture process is running on the source server and
determines which changes(updates) were made against the replication source
and writes these rows to special tables, the control tables, which contains all
the changes of the source table. After Capture has done it’s job the data
are available to be replicated to the target. When Apply gets invoked it will
read these changed data from the control tables and copies it to the target
tables.

3.3 Replicated Data

Data can be copied from the replication source tables to the replication target
tables differently. That depends on the type of target table you want. Target
tables can be read only or updateable. There are several types of target in
DB2’s DPropR tables:

e User copy (read only)
This is a complete, consistent copy of the replication source table. It
must have a primary key. It can be a subset by row(selection) or® by
column(projection).

e Point-in-time (read only)
This is a complete, condensed copy of the replication source table at

2”or” means logical an or not(!) an exclusive or

16

co ™\
| CD/UOW tables |
e D
:r 777777777777777 | These tables are :r 7777777777777777 E
: Source Table | located in the : Target Table :
E I source db E E
Source DB Target DB

Figure 1: Overview of a replication process

a certain point in time. It must have a primary key. This table is
enriched with a timestamp column to indicate when a transaction on
the source table occurred. It can be a subset by row or by column.

Base aggregate (read only)

This is a history table in which new rows are appended for each sub-
scription cycle using the result of an SQL column function calculation
against the replication source table data. This table summarizes the
contents of the source table itself.

Change aggregate (read only)

This is a history table in which a new row is appended for each changed
row in the replication source table using the result of an SQL col-
umn function calculation against only recently changed data. Basically,
you’ll find all the changes aggregated in that table.

Consistent change data (CCD) tables (read only)

These tables are used as staging tables. Changed data is copied from
the replication source to the target tables. CCD tables only consist of
committed data. Once data was copied to the CCD tables it can be

17

used as a source in a replication scenario with other target tables. This
concept makes an environment more flexible and efficient.

— Condensed, non-complete
This staging table contains the most current values of updated
rows. Only rows which were changed can be found it that table.

— Condensed, complete
This staging table contains all the rows from the replication source
and the most current values from each row.

— Non-condensed, non-complete
This table is intially empty and will be appended by each insert,
update and delete action on the source table.

— Non-condensed, complete
This table is initially a complete copy of the source table and will
be appended by each insert, update and delete action. It contains
the whole history of the source table.

e Replica (updateable)
This table can be updated and is used for update-anywhere scenarios.
Changes on the target table got replicated to the source table.

3.4 Capture

Captures task is to determine all the changes that were made against the
replication source and makes those available for replication. There is only
one single Capture process for one database and it will act on all registered
source tables in this database. Therefore it runs on the source server.
Typically Capture runs continuously, but you can stop it while running
utilities or modifying replication sources.

When capture gets started it reads the register table to determine the
source tables for which it needs to start capturing changes. DB2 records all
transactions in log file for recovery and diagnostic. Capture reads this log file
to detect changed records from source tables that are defined as replication
sources. It does not need to access the source tables for capturing changes.
It will place changes to the Changed Data (CD) tables. There is one CD
table for each registered source table. Capture also retrieves information
about committed changes and stores it in the Unit-Of-Work (UOW) table.
The rows in that table identify those transactions that have been committed.
This happens in the same order as it can be found in log record, it preserves

18

e I\
Source Tables
[I I
[| |
Change Data Tables
[I | I | I
Transactions
All changes
Only
committed
DB2og changes
record Unit-Of-Work Table
Replication source definitions
_ asn.ibmsnap_register Y,

Figure 2: Architecture of Capture

the order of transactions. That ensures transaction consistency for the repli-
cation process. Then it updates the register table to record the amount of
committed data that was captured for every replication source.

3.5 Apply

Apply is the program that copies the changed data from the replication
source to the replication target. It does that by reading the changes stored
in the CD table and applies it to the target tables at local or remote servers.
Apply can also perform column functions on the data from the source or CD
tables and appends these results to the target tables. It copies data either
by full refresh or by differential refresh.

For a full refresh Apply does not access any CD or CCD table. Instead
it will directly access the source table and copy it entirely. The Capture
program is not involved at all, it does not capture any changes and write
to none of the control tables. Full refresh is used for the initial load of the
target table. You can specify full refresh when you define the replication

19

4 I
Change data tables
[[[
[I I
! Target Tables
J | [: I : I :
~
Unit-of-work table ’
J

Figure 3: Architecture of Apply

source.

For differential refresh, Apply copies only changed data from the CD (in
conjunction with the data in the UOW table to replicate only committed
changes) tables to the target tables. When Apply gets invoked the very first
time or after a cold start of the Capture program it does a full refresh to
populate the target database. From then on Apply uses differential refresh.

3.6 Database Protocol Based Connection

Distributed Relational Database Architecture (DRDA) is a standardized
database protocol that provides reliable, fast, and secure access to data
within heterogeneous client-server environments. DRDA defines the com-
mands, data formats, and rules that allow any DRDA client to inter-operate
with any DRDA server. It allows application developers to use SQL
statements in their code.

DRDA provides a robust connection between DB2 clients and servers.
The DB2 data replication product DPropR is as the entire DB2 family DRDA
enabled. Database applications or tools that are coded using standard SQL
APIs as embedded SQL can automatically access remote databases because
the underlying database client code in DRDA-enabled. So the application
does not need to know about the location of the database in the network
and is free from communications code needed to access the database, which

is know as Distribution Transparency.

20

21

4 QOverview of Data-Links

Data-Links is an innovative software that has broad appeal across a variety of
application segments. Any application with significant content-management
requirements can benefit from Data-Links, from Web-based electronic-
commerce and intra-net applications to more traditional computer-aided
design and manufacturing (CAD/CAM) applications which created the
initial customer push for Data-Links.

Data-Links meets a very challenging application requirement that has
existed for many years. It enables organizations to continue storing data
(particularly large files of unstructured or semi-structured data such as
documents, images, video clips, and engineering drawings) in the file
system to take advantage of file-system capabilities, while at the same
time coordinating the management of these files and their contents with
associated data stored in an RDBMS.

The contents of this chapter are based to a large extent on [5].

Data-Links gives customers comprehensive control over external data in
the following areas:

e Referential integrity
Data-Links ensures that users cannot delete or rename any external file
as long as it is referenced in the database.

e Access control
DB2’s permissions can also be used to grant the ability to read a ref-
erenced external file. Read access control is optional it can be left to
the file system or given to the DBMS.
Write permissions can be left with the file system or blocked. ”Blocked”
means that a referenced file cannot be updated in place; a a new version
must be created and then the link switched in the database through
a SQL "update” statement. If the file system retains write permis-
sion, files can be updated in place. In this case, there is no "update”
statement issued against the DB2 table. Therefore, DB2 cannot sup-
port coordinated backup and recovery because it is not informed about
updated files.

e (Coordinated backup and recovery
The DBMS is responsible for backup and recovery of external data in
synchronization with the associated database. This type of control over
external data is also optional.

22

e Transaction consistency

Changes that affect both the database and external files are executed
within a transactional context to preserve the logical integrity and con-
sistency of the data.

In addition to the advantages inherent in RDBMS management of exter-
nal data, Data-Links have some significant benefits. It,

e Allows external files to be stored in close proximity to the application

to reduce network traffic and maximize application performance.

e Maintains speed of file access by continuing to use the file system for

this, not the DBMS. This is also critical to application performance.

e Requires minimal or no changes to existing applications.

e Works with any file system on Unix or Windows NT, and takes ad-

4.1

vantage of support for hierarchical storage managers within the file
system.

Overall architecture

Data-Links consists of several components:

e The Data-Link datatype — This is a new build-in base type of DB2

UDB

e The DB2 Data-Link Manager software on the file server — The Data-

Link Manger software consists of two components: the Data-Links File
Manager (DLFM) and the Data-Links File system Filter (DLFF).

e DBMS/DLFM APIs which is used to communicate with the Data-Links

Manager on the file server.

The DB2 UDB and the Data Links Manager can run on different plat-
forms. The Data-Links File Manager itself can run on different multiple,
heterogeneous file systems. So the database can contain references to files
stored in multiple, distributed file systems. That allows the files to be close
to their applications, reduces network traffic and improves application per-
formance.

23

File systems of
. different platforms
Application Standard file access
DataLinks
Manager |
SQL Dataincluding

URLs referencing files
Control path for
external files

(link/unlink,
access control,
DB2 database backup and recovery)

with Data Links

Figure 4: Overview of Data Links Manager

4.2 Functionality

The Data Link File Manager(DLFM) plays the key role in managing external
files. It is responsible for the link and unlink operations with transactional
semantics within the file system. The DLFM maintains its own repository
for the linked files. When a file is initially linked to the database, the DLFM
applies the constraints for referential integrity, access control and backup and
recovery as specified in the DATA LINK column definition.

Before an external file can be linked to a database, it must be created by
an application. Afterwards a reference of this file which is an URL, for
instance http://sample-svr.com/sample-dir/sample-file.txt, can be inserted
in a DATA-LINK column of a table. Applying SQL statements for modifying
DATA-LINK data will provoke DB2 to do the following:

e INSERT statement:
The insert statement prompts DB2 to run a Link-File operation. This
Link-File operation will be done by the Data Link Manager. From then
on the DBMS got control over the file.

e DELETE statement:
A delete statement will prompt DB2 to unlink the file and delete the
row. The file can now be deleted or returned to control of the file

24

system.

e UPDATE statement:
An SQL update statement is the result of an Unlink-File operation for
the old URL and a Link-File operation for the new URL.

The DLFM is also responsible for ”garbage collection” of backup copies
of unlinked files that are no longer required by the DBMS.

The DLFF is a thin, database-control layer on the file system that inter-
cepts certain file-system calls, e.g. file-open, file-rename or file-delete issued
by the application. It ensures that any access request meets DBMS security
and integrity requirements. The DLFF does also validating any authorization
token embedded in the pathname for a file-open operation.

s ™
Applications
SQL API Request File APl Request
Table
key | files(Datalink type I Iﬁ
X file DLEE
DBMS/DLFM . - enforces referential
API _FI les integrity
- inthe - access control
filesystem
DLFM
- link/unlink operations
- applies constrains for referentia integrity

Figure 5: Architecture of Data Links Manager

25

5 Description of The Problem

Data-Link data consists of two pieces of information:
e the logical reference to an external file (stored in the database)

e and the physical copy of the data file (stored at the file server).

Therefore, when replicating a Data-Link value, we need to replicate the in-
formation mentioned above. The replication order should be:

e we need to copy the data file first to the target site

e and then the Data-Link value, so that the database can link (reference)
the file. Linking a file requires the existence of the file.

For doing that, we have two major technical issues to be addressed:

1. how to transfer the data file from the source file server to the target
file server.

2. how to know where (at which file server and in which directory) the
data file will be stored at the target (i.e. mapping between the source
data file to target data file, discussed in section 6.3.5 on page 31)

Given the existing architecture of Capture and Apply, this is not an easy
task.

5.1 Data Links And DRDA

The DB2 replication tool DPropR propagates only data between different
databases using the DRDA protocol.

All of the data to propagate are existing in some databases within a dis-
tributed database environment. Therefore, the replication tool uses the
DRDA protocol to copy the appropriate data between different databases
because those databases are able to communicate with each other using the
DRDA protocol.

For Data Links the case is different. There are data inside the database and
outside the database as well. The data outside of the database are stored as
files in the file system and not in the database itself. Only logical links to
those files are stored in tables inside of the database and are managed by the
DBMS. That means that we can use DRDA to replicate the file references
inside the database as usual as any other datatype(VARCHAR), but there
exists no solution which gives us the opportunity to use DRDA to replicate
files existing in the file system to different servers.

26

5.2 Data Links And The Log Record

DProprR is a log-based replication technique. It looks in the log record for
changes made to the registered source tables. But with Data-Links only
the references to the files in the file system are stored and managed in the
database. Therefore, there will only be the reference in the log record but not
the file itself. All what Capture can do is to capture the Data-Link(reference
to a file) found in the log record and copy it to the changed data table.

5.3 Data Links And Apply

The same problem comes up with the Apply program. Apply does not know
how to copy a Data-Link-ed file. Since the DRDA protocol does not know
the datatype file and how to access the file system in order to read and to
write a file there will be no way for Apply to replicate file data between
distributed database systems.

The only way for accessing a file referenced in a database would be accessing
it directly using standard I/O of ftp. This is what we discuss later on in
chapter 6 on page 27 for the prototype design.

27

6 The Prototype

6.1 Idea

The requirement for this prototype is not to change the existing code of
Capture and Apply. The idea is to use the existing ability to replicate the
BLOB datatype of DPropR. The file data should be converted to a BLOB and
inserted into the database. Afterwards it can be replicated using a DRDA
connection. On the target side the BLOB must then be materialized back
into a file again.

When inserting the Data-Link value into the target table the file will already
exist at the target file server and the linking can be done.

6.2 Design architecture

This prototype addresses the file transfer issue without modifying any
existing component. We will also address the second issue, the file mapping,
here and provide a simple solution for it.

There are several pieces added on the top of the existing components:

e Split the base table into two. One with no Data-Link columns and the
other with a foreign key column and all the Data-Links columns. The
table with no Data-Link columns will be defined as replication source
for the Capture program.

e A join view to put both tables together. Instead of defining the view
on the Data-Link columns, we define the columns as a UDF of a Data-
Link which returns a BLOB containing the corresponding file and the
reference string in front of it. This view will be used by Apply as a
source table. When Apply is going to propagate the data it will copy
this BLOB instead of just the reference to a file.

e A join view to add a ”char(1)” column for each Data-Link column of

the base tables to the CD table. This view is defined as CD table for
the Apply program.

e For each target table, two extra columns are defined. One is for storing
the BLOB value. The other is for the actual Data-Link column.

e Two file mapping tables will be defined within the target database to
describe where to store the file.

28

e An after-SQL stored procedure is defined at the target server to first
identify the file location and then convert the BLOB value to a file.
Finally, it updates the Data-Link column into the target table. The
stored procedure will be called by Apply and must be defined in the
subscription.

SOURCE TARGET

caling SP
fm—mmmmm——————— / SN PR L _ _ // \\ ___________
' BaseTablel BaseTable2| CD TableView | - ! :
[key] - key|DataLink key [[char(1)] ! i !
i[X X X U Lol Target Table Mapping Tables '
i ' '[_Blob| DaaLink |
! o x \ - :
! [i
! Al A [\ |
i oin vi 1 . \ my
| 'y'r—oinvi . =
| - s - \ ;
| . i |
i Source Table View Berar= 1 \ !
' [ke] [ODE - A I !
! - - |get_blob(Datalink) CD Table 1 | :
L [x key[-- P L = |
i X ! | |
! | | |
! | | |
! | | |

log file % L :

Figure 6: Architecture for the Data-Link replication prototype

The control flow:

1. Capture reads the log records for updates in the replication source
("Base Table 17).

2. For each log record, Capture inserts a row into the CD table.

29

3. When it is time for Apply to replicate the data, it reads the changes
from the CD table defined in the subscription. This is the ”CD Table
View”-table.

4. Apply will read, beside the data from the other columns, the indicator
column in ”CD Table View”-table and finds an ’U’. The U’ means
"Update of a LOB datatype’. This tells Apply to access the source table
”Source Table View” directly to retrieve the data for propagation.

It gets the data from a column which is defined as UDF of a Data-Link.
This UDF returns a BLOB in which it wrote the Data-Link itself and
the content of the file.

5. Apply will then replicate the BLOB value as well as the other changed
columns to the target table.

6. After Apply has replicated all changed data it calls the stored procedure.

7. The stored procedure first converts the Data-Link value from the source
server to the target server depending on the contents of the file mapping
tables.(for mapping see section 6.3.5 on page 31).

8. Then it copies the BLOB value into a file to its new location at the
target side.

9. Finally, it updates the Data-Link column in the target table which
establishes a link to the file at the file server.

6.3 Internal Design

This section is going to describe each individual add-on component in more
detail.

6.3.1 Using UDF for The File-to-BLOB conversion UDF

A UDF function will be defined at the source server to perform the following
tasks:

e retrieve the content of the file specified by a URL value
e then convert them into a BLOB format and return it to the caller

It takes VARCHAR as an input parameter and BLOB as the return para-
meter.

30

6.3.2 Retrieve the file content

There are several ways to retrieve a file:

e If the file is located at the same machine (either on a local or network
file system), using the standard I/O file function will be sufficient if
DB2 has the permission to access the file.

e For a remote file, we could use the HTTP protocol but with a require-
ment that there is a HT'TP daemon running on the remote side and
the daemon has the permission to touch the file.

e We can also use the FTP protocol. It requires a user and a password
to be set up and known by the UDF to be able to retrieve the file.
The user/password information can be specified for each registered file
server in the Data-Link configuration file. The same FTP protocol
would also be used to store the file on the target side.

6.3.3 File-to-BLOB conversion

The conversion will be simple. First, the UDF creates a BLOB object and
stores the file name in the beginning followed by a zero bit. Then it opens
the file and appends it’s content as a buffered stream to the BLOB object.
We put the file name at the beginning of the BLOB object so that when we
materialize the file at the target side, we will know the original Data-Link
value to do the file mapping.

This approach does not handle the case where the file representation dif-
fers between the source and target side.
Since the size of Data-Link files could be large, to reduce the amount of
data transferred over the network, we should consider to compress the data
before returning it as a BLOB. There are many well-accepted compression
algorithms that we can use. However, it usually requires the file to be mate-
rialized before compression can take place, rather than compress on the fly.
Therefore, a ”tmp”-directory is required to store a copy of the file. Since
compression requires additional disk I/O and CPU time, we should only
perform the compression if the file is bigger than certain size.

6.3.4 Data in CD table

The current version of Capture does not recognize the Data-Link datatype
in the log record and will crash if it finds any. That’s the reason why we
must not have a Data-Link column in the replication source. We had to

31

work around that problem and found a solution to make it work.

Because we need to define a Data-Link column we split the source table

into two tables. One table contains all the original columns except the
Data-Link column. This table I call "base table 1” and will be defined as
replication source for the Capture process, so that capture does not get
in touch with any Data-Link column. The second table will contain the
primary key columns plus the Data-Link column. That I call "base table 2”.
Since we defined a view over these 2 base tables we can now create a CD
table that has an extra column for an updated LOB value.
To achieve that we define the CD table as a join view over the original CD
table and ”base tables 2” which contains the primary key columns and the
Data-Link column. But instead of adding the Data-Link column itself we
add an char(1) column and insert an capital u ("U”).

The definition of the table looks like that:

CREATE VIEW GUIDO.CD-Table2 as select
a.IBMSNAP_UOWID, a.IBMSNAP_INTENTSEQ,
a.IBMSNAP_OPERATION, a.deptno, a.deptname,
a.mgrno, a.admrdept, a.location,
substr(’U’,1, 1) as dlblob

FROM GUIDO.CD-Tablel a, GUIDO.deptdltbl b
WHERE a.deptno = b.deptno;

When Apply is going to copy the changed rows and finds the column with
an U, it will copy the BLOB value by accessing directly the replication source
table which is for apply the join-view over base table 1 and the UDF of the
Data-Link column from base table2.
6.3.5 How to do the server-to-target file mapping
A Data-Link value composes of three basic elements :

e the server name

e the prefix name

e and the stem-name

The Server name is the host machine which contains the file. The
Prefix name is the mount point of the Data-Link file system and is
defined in each Data-Link File Manager(DLFM). Finally, stem-name is

32

the rest of the value. For instance, if we have a Data-Link value,
http://dl.stl.ibm.com/ shared_dlfs/x/pict.gif , the server name will be
”dl.stl.ibm.com”, the prefix name will be ” /shared_dlfs” and the stem-name
will be "x/pict.gif”.

Therefore, our first approach is to have two mapping tables in each target
database. It will be one table for the server mapping called:

e IBMSNAP_SERVER_MAP
e IBMSNAP_PREFIX_MAP

The IBMSNAP_SERVER_MAP table will be used to map the source
server, to a server connected to target database. For example, if the
source. URL is http://source_svr.stl. ibm.com/path/file, the (server-)
mapped URL would look like http://target_svr.stl.ibm.com/path/file where
source_svr.stl.ibm.com is the file server on the source side and is mapped to
target_svr.stl.ibm.com.

We also plan to have a default value in the table so that all the servers
that are not inserted in IBMSNAP_SERVER_MAP table are automatically
mapped to a default target server.

If the table contains neither the mapping for the source server nor a default
value, an error will be returned.

A IBMSNAP_SERVER_MAP table could for instance look like the fol-

lowing:

Server Id | Source Server Target Server
1 src_testl.alm.ibm.com | trg_testl.stl.ibm.com
2 src_test2.alm.ibm.com | trg_test2.stl.ibm.com
3 src_test3d.alm.ibm.com | trg_testl.stl.ibm.com
default any other server trg_test1l.stl.ibm.com

Table 2: Sample of IBMSNAP_SERVER_MAP table

The IBMSNAP_PREFIX_MAP table will be used to map different prefix
names included in the source Data-Link value to different paths on the
target server. For example if the source URL is http://source_svr /a/b/file,
the mapped URL will look like: http://target_svr/x/file where the path
/a/b is mapped to the path /x. It also supports default directory. If no

33

mapping can be found for the source URL, the file will be replicated to a
default directory. No mapping will be performed on the stem-name.

We also thought about the problem when the file that we want to replicate
already exists. We decided for the solution to rename the file and to come
out with an appropriate message. At this moment, it is not clear how the
naming convention for those files will look like. The simplest way will be
appending a number to the URL.

A IBMSNAP_PREFIX_MAP table could look like this:

Server Id | Source Prefix Name | Target Prefix Name
1 /x /a
1 /test /a
2 /test /b
2 [x/[y]? /b
3 /x /test
default | * /a

Table 3: Sample of IBMSNAP_PREFIX_MAP table

The advantage of this approach is that if no mapping is defined for a
particular server, we would still perform the replication as long as we define
a default entry and it is valid. Then customers will be able to find the files
in the default directory server/a.

When defining a Data-Link column in the target table, we have to be
careful about the link options. For example, when a Data-Link column was
changed in the source side and got replicated to the target, if the Data-Link
column has ”ON UNLINK RESTORE”, the file will still be there even after
the update and we will have two files (the replicated file will be renamed to
something else.)

6.3.6 Stored procedure to materialize the file

After the BLOB got replicated to the target table, Apply will invoke the
stored procedure in order to perform the followings:

e first it does a query over the Data-Link column

34

e it will select the BLOBs of all the rows which have an empty(”null”
value) Data-Link column

e afterwards it extracts the URL which is stored in front of the BLOB

e then it maps the URL to the target side using the mapping tables as
described in section 6.3.5 on page 31

e the next step is to read the content of the BLOB and to materialize it
into the file

e if the file server is at the same host as the database server, it stores
the file directly using standard I/O operations. Otherwise, we will use
FTP as described in section 6.3.2 on page 30 to send the file over

e the last step is to insert the URL in the Data-Link column of the target
table. If this column was defined with "no link control” the Data-Link

Manager will do nothing. Otherwise it will do a link operation to the
file.

6.4 Limitation and Potential Performance Issues

Regarding to this design, there are several technical problems and perfor-
mance issues.

Usability issues:

e The current Capture program cannot handle DBMS log record with
Data-Link column. It will abort if a replication source table contains
any Data-Link column. Therefore, to get around the problem tem-
porarily, we create another table to store the Data-Link columns sep-
arately along with the primary key column using join-view to retrieve
the Data-Link value. We define only the original table as the replica-
tion source, not the second one. Therefore, in order to insert a row, it
requires first to insert the row to the original table and then insert just
the Data-Link values and key to the second table.

e There is a restriction that no input parameter is allowed for any stored
procedure used in a subscription. Therefore, you cannot call the stored
procedure with any parameter and the target table name, the BLOB
column name, the column name which is defined as primary key and
Data-Link column name must be hard coded inside the stored proce-
dure.

35

The target Data-Link column must always accept null values because
the value will not be filled in until the stored procedure is called.

We did not solve the problem, what is to do if we replicate a file that
already exists at the target side, which is also the case for updates of
data linked files. The problem is mention in section 6.3.5 on page 33.

Technical issues:

The original row in the source table may already be removed while we
retrieve the Data-Link value.

Since we do not use the Recovery_ID, the file that we retrieve may not
match the value of other columns in the row.

Since with the Data-Link datatype problems in the Capture program,
we do not define the second base table (containing only the primary key
columns and the Data-Link column) as replication source and changes
on this table will not be captured. Therefore, an update on the Data-
Link column will not be recognized by the Capture program and the
replication process will not work if we change the Data-Link column in
base table 2.

This design does not address on how to assign the owner of the repli-
cated file. Currently, it will be owned by the FTP user. We would con-
sider to add an extra column (like Default Owner) to the IBMSNAP_
PREFIX_MAP table to store the default owner id of files created un-
der the corresponding directory. Still, the problem is that files would
be on a remote machine and we cannot change the file owner through
the FTP channel unless we have a root process running on the remote
machine to do the job.

The file replication does not maintain the file permission. For example,
on UNIX, in order for a file to be an executable, it must have an execute
permission. However, the permission of the target file will be whatever
the default value is and will not be the same as the permission of the
source file.

This prototype has also not addressed the issue if the file format of the
target server is different from the source server, such as UNIX vs NT.

Performance issues :

36

e It requires at least three intermediate steps in order to transfer a file
from the source file server to the target file server. From source file
server to source db, from source db to target db and materialize the
BLOB data on the disk on the server side and then from disk to target
file server.

e Each lookup by join view requires access to the source table directly. It
would interfere the normal operation in the source server. They both
requires extra processing resources.

e There is an extra disk storage requirement on the target side to store
the BLOB data.

37

7 Implementation

There were 2 people working on this prototype. It was Joshua Hui and
myself. So we split the work into two pieces. Joshua did the work at the
source side and I did the target side.

The implementation of the prototype was done in java because there was
already a UDF example written in java which converts a file into a BLOB.
So, Joshua modified this UDF and wrote an ftp client class that was used by
the UDF and Stored Procedure (which was written by myself) the read and
write the file from and to remote servers.

7.1 Description of the implementation

The whole project contains several SQL files which are needed to setup the
replication environment. It also contains of four java classes. The class Data
Channel is to establish a data channel to the remote side either to send or to
receive data. The class FTP is a simple F'TP client. It is used by the UDF
and Stored Procedure to send and to receive the wanted files and to create
the necessary directories. The class StP contains the stored procedure.

e Class DataCannel

public DataChannel(String remotehost, int remoteport)
throws IOException;

public int localPort();

public void open(boolean read)
throws IOException, Exception ;

public InputStream inputstream();

public OutputStream outputstream();

public void close()
throws IOException, Exception ;

e Class FTP

public FTP (String host, String user, String password)
throws IOException, Exception;
public int sendCommand(String command)
throws IOException, Exception;
public int readResponse ()
throws IOException;
public void asciiMode ()
throws IOException, Exception;
public void binaryMode ()

38

throws IOException, Exception;
public void cwd(String dir)
throws IOException, Exception;
public InputStream startRecvFile(String filename)
throws IOException, Exception;
public void endRecvFile()
throws IOException, Exception;
public OutputStream startSendFile(String filename)
throws IOException, Exception;
public void endSendFile()
throws IOException, Exception;
public void check_dirs (String filename)
throws IOException, Exception;
void create_dirs (String ppath)
throws IOException, Exception;
String extractPortAddress(String s)
throws Exception;
private static String makePortAddress(InetAddress inad, int port);
private static String toUnsignedDecimal(byte b);

Class DB2Udf

public void getBlob(String dlnk, Blob result)
throws Exception;

public void start_time() throws IOException;

public void stop_time() throws IOException;

public void set_starttime(long start);

public void set_stoptime(long stop);

public double get_starttime();

public double get_stoptime();

Class Stp

public void PutFile () throws Exception;
public void map_dlnk (Connection con, URL dlink);
public void insert_dlnk (Connection con,String key)
throws Exception;
public void read_dlnk(InputStream in)
throws IOException;
public void write_file (InputStream in)
throws IOException;
public URL get_dlnk Q);
public void set_dlnk (String new_dlnk);

39

public void start_time()throws IOException;
public void stop_time ()throws IOException;
public void set_starttime(long start)
public void set_stoptime(long stop)

public double get_starttime();

public double get_stoptime();

7.2 Performance measurements

Performance is the big issue for this prototype as mentioned in section 6.4 on
page 35. It is not acceptable to copy a blob three times is in the performance
point of view.

To illustrate the severity of the problem we measured the performance of the
prototype. I did three different measurements.

1. T replicated Data-Links referencing to files with a size of 2 MB residing
on a remote server to another remote server.

2. Afterwards it I replicated 1MB files residing at the same source server
to a remote server.

3. The last test I did was replicating Data-Links referencing 500kB files.

7.2.1 Replication scenario

An Intel PC was used to run the replication test. DB2 UDB 5.2 was installed
on that machine. The test used two databases (sample and copydb) which
were create on that PC.

The aim was to replicate one table (view) from the database ”sample” to
the database ”"copydb”. There were 10 rows inserted into the source table.
One of the columns was a Data-Link column (with no link control). The
Data-Links pointed to a remote AIX server. The task was to establish an
ftp connection in order to receive the appropriate file and to copy it into the
database as a BLOB. When the blob gets replicated the Stored Procedure
will search for rows with an empty Data-Link column. If it finds any it will
read the reference from the blob. The reference is stored in front of the file
data within the BLOB blob. Then is needs to map the reference to the new
location. As described in chapter 6.3.5 on page 31 it is necessary to have two
mapping tables with the appropriate entries. Table 4 and 5 show how the
mapping tables looks like.

40

Server Id | Source Server Target Server
1 dlsmp.almaden.ibm.com | shiloh.stl.ibm.com
2 breeze.alm.ibm.com shiloh.stl.ibm.com
3 default shiloh.stl.ibm.com

Table 4: Rows of the IBMSNAP_SERVER_MAP table

Server Id | Source Prefix Name | Target Prefix Name
1 /localfs/jhui/sredir /home/guido/Test /targetdir
1 /u/hui /home/guido/Test /targetdir
1 default /home/guido/Test /targetdir
2 /localfs/jhui/sredir /home/guido/Test/targetdir
2 default /home/guido/Test /targetdir
3 default /home/guido/Test /targetdir

Table 5: Entries of IBMSNAP_PREFIX_MAP table

7.2.2 Results of the test

The performance of replicating Data-Links is influenced by many factors.
For instance if we receive and write the files via ftp the performance
strongly depends on how fast the ftp connection itself is. A slow ftp
connection could slow down the entire replication process. That’s why
I will replicate 10 Data-Link values which all point to files with the
same size. The UDF establishes every time a new ftp connection and we’ll
get more realistic results of the prototype and are able to make a proposition.

To measure the performance of the replication process 1 will use the
Performance Trace(trcperf) flag of the Apply program. The time I will get
from that trace includes also the time of 10 UDF processing (Typr), how
long it needs to receive the files via ftp. That’s why I wrote a routine within
the UDF which prints the time for each UDF in a different file.

The times from those files will then be added to Typr = Z}le UDF, and
then substracted from the apply-process-time T4, I got from the Apply
Performance Trace. The result Tgrop = Tappy — Tupr will give me the
time the database needed for replicating the blob.

The time for the overall replication process is the Time for Apply Tuppi
plus the time for the stored procedure Ts;p to materialize the BLOBs into
files (TTotal = TApply + TStP)-

41

Table 6 shows the time of the UDF for 10 files in three different sizes.

Measures Time in seconds
500kB | 1MB 2MB
4.317 | 10.134 | 31.375
3.425 | 7.621 | 26.158
3.365 | 7.922 | 26.498
3.054 | 7.241 | 26.639
3.325 | 7.26 26.138
3.355 | 7.311 | 26.147
3.224 | 7.601 | 25.597
3.325 | 7.331 | 26.117
3.185 | 7.47 26.087
10. 3.304 | 7.361 | 30.574
Average: | 3.388 | 7.725 | 27.13
Total: 33.879 | 77.252 | 271.33

ORI N O | L) o) =

Table 6: Time for UDF

Table 7 will show you the results from the Apply perftrc printouts.
These results include the processing time of the UDF and the replication of
the BLOB.

10 files with size of Time in seconds
Apply + UDF() | Stored Procedure
2MB 313.41 44.033
1MB 95.918 26.718
500kB 44.452 21.772

Table 7: Performance of replicating Data-Links

The time for replicating the BLOB is
(TBLOB = TApply - TUDF)I

2MB : 313.41s — 271.33s = 42.08s
1IMB : 95.918s — 77.252s = 18.666s
0.5MB : 44.452s — 33.879s = 10.573s

Total time for replicating the file of is
(TTotal = TApply + TStP):

42

2MB : 313.41s + 44.033s = 357.443s
1IMB : 95.918s + 26.718s = 122.6365
0.5MB : 44.452s5 + 21.772s = 66.224s

This time just give you an idea about what you can expect from this
prototype.
Unfortunately, it is very difficult to compare these times to any other times
of any other replication process. Since we are using nothing really new and
were just working around the given code of Capture and Apply. So what it
means is, that we are only using all the given features of DB2 and DPropR.
But if we look at the measured times for replicating the files which look very
high, we see that the problems about performance I mentioned in chapter
6.4 on page 35 became true. But those numbers are not unexpected since we
knew that we copy the files three times within the whole replication process.
To give an impression about how long the replication process last we can just
compare it with an usual ftp access to get the files. In table 6 we have already
10 ftp accesses through the UDF Ty pr and the average time to get the file
Typr/io- 1 also calculated just above how much time the entire replication
process T takes. And if we just divide the whole replication process by
ten we then have the average time for replicating just one file Trq1/10-

size Tuprio in sec | Trg)10 in sec | Difference
2MB 27.13 35.74 8.61
1MB 7.72 12.26 4.54
500kB | 3.39 6.62 3.23

Table 8: Comparing ftp access only and prototype

Of course DPropR does a lot more than just copying the file, but most
of the time difference comes from copying the Blob. This is the factor what
makes that prototype that slow.

43

8 Conclusion and recommendations

This prototype was the first attempt to replicate a Data-Link datatype within
IBM’s DPropR data replication product. The goal was to find a way to repli-
cate data linked files without any changes of the existing code.

We realized that goal and produced a prototype which replicated files refer-
enced in a database’s table from one server to another. But the prototype
has several limitations, for example we had to hard code a lot of important
information the prototype needed such as table and column names which
made it not very usable (see section 6.4 on page 34).

One of the biggest problems was to setup all the definitions to register and
setup the environment for Capture and Apply. Since the current Capture
program did not recognize the Data-Link datatype and could not even ig-
nore it without crashing we had to avoid Capture to get in touch with any
Data-Link datatype. So, we had to be very tricky by defining the replication
sources, CD tables and the description.

We already predicted in the prototype design that it would probably per-
form too slow in order to use it as a customer product. And this prediction
was confirmed as described in chapter 6.4 at page 35 when we did the first
performance measurements.

You can split the problems of the prototype in two categorizes.

1. One is the performance problem.

2. The limitations the prototype comes with such as (section 6.4 on page
34):

e file owners
e file permissions

e file format between different servers

Solving these set of problems would allow us to provide a usable replica-
tion feature. The most important of such limitations can be eliminated by
modifying the Capture code to understand a Data-Link datatype. Once the
Capture code knows the Data-Link datatype setting up the replication envi-
ronment should not be a problem anymore.

The other major limitations can be addressed by making the Stored Proce-
dure more dynamic, leaving all the hard coded parts out of it since it is not
possible to pass any parameters to a Stored Procedure which is called by a
subscription. This would have to be dealt with first. The performance prob-
lem can be addressed by eliminating the BLOB copies. This can be achieved
by using a regular FTP tool to copy the files and restrict the use of Capture

44

and Apply to replicate the file references.

Once the above points are done, the customer would have a usable replica-
tion product for data linked files. This is the current approach planned for
inclusion in IBM’s DPropR product.

45

References

1]

2]

(6]

T.Beuter, P.Dadam: Prinizipien der Replikationskontrolle in verteilten
Datenbanken; published in: GI Informatik und Forschung und Entwick-
lung, 11, 4, (Nov. 1996), 203-212

Pam Drew, Roger King, Dennis McLeod, Marek Rusinkiewicz and Avi
Siberschatz. ”Report of the Workshop on Semantic Heterogeneity and
Interoperation of Multidatabase Systems.” SIGMOD Record, Volume
22, Number 3, September 1993.

Robert Goldring: Update Replication: What Every Designer Should
Know. Info DB (USA) Vol9, No.2 April 1995, published at:
http://www.software.ibm.com /data/pubs/goldring/

Andreas Heuer, Gunter Saake: Datenbanken Implementierungstech-
niken; 1. Auflage 1999

Judith R. Davis, DATALINKS: MANAGING EXTERNAL
DATA WITH DB2 UNIVERSAL DATABASE Prepared for
IBM Corporation by February, 1999 published at: http://www-
4.ibm.com /software/data/pubs/papers/datalink.html

IBM bookserver, Title: DB2 Replication Guide and Reference Docu-
ment Number: SC26-9642-00, Build Date: 03/02/99 14:03:22 Build
Version: 1.3.0 Book Path: /home/publib/epubs/book/ASNU5002.BOO
published at: http://publib.boulder.ibm.com:80/cgi-bin/bookmgr/-
BOOKS/ASNU5002/CCONTENTS

