
A Conceptual Modeling Approach to XML

Schema Evolution

Meike Klettke

Database Research Group, University of Rostock, Germany
meike@informatik.uni-rostock.de

Abstract. Conceptual design methods are used in many �elds of com-
puter science. Most methods support the design of new applications. The
evolution of existing applications is similar to the design task. A unique
model, method and tool that support both tasks is desirable.
In this article, such a method is suggested for the design and the evolution
of XML schemas. The article focusses on the evolution and introduces
the subtasks that are necessary for enhancing XML schemas. It will show
that schema evolution can be realized on a conceptual model. Schema
evolution always requires the propagation of changes to XML schema
and also to XML documents associated to the schema.
The approach is implemented in a tool called CoDEX (ConceptualDesign
and Evolution of XML schemas).

1 Introduction

Nearly every �eld of computer science employs models and modelling methods for
the design of new information. In database design, a conceptual model is used
for de�ning new databases. In software development, the widely used Uni�ed
Modeling Language (UML) plays this role. Some suggestions for models that
can be helpful for de�ning schemas for XML documents are also available.

1.1 Evolution of existing applications

All information (databases, software, XML schemas) is used over very long peri-
ods of time. That's why, it is necessary to update or change the information from
time to time. Two main reasons can be given why changes are necessary. First, er-
rors of the software products cause these changes, secondly the environment (for
instance other applications, interfaces, processes or regulations) are changed and
hence adaptations are necessary. In [25], Parnas enumerates reasons for software
aging and illustrates with several examples the need for evolution.

In software development, the well-known waterfall model was replaced by the
spiral model that represents the continuous process of development in a better
way. Figure 1 shows this model. Obviously, the same phases in the software life
cycle are passed through several times.

As shown in this model, design is a continuous process, tools are needed that
can be used for the design of new applications as well as for the evolution of

Fig. 1. Spiral model, suggested by Boehm [2], �gure from [20]

available solutions. There exist several database design tools, that can generate
a conceptual model, for instance an Entity Relationship Model from existing
databases � a so called reverse engineering process. These conceptual models can
be enhanced and translated into a new database. If we choose such a method, we
get a new database schema, but the data of the old database is not taken over
into the new one. The database evolution can be described with alter table

statements that are much more di�cult to specify than Entity Relationship
Models.

We can consider the gap between the design of a new application versus the
evolution as is shown in �gure 2.

Design Evolution

alter table news
add column
subtitle varchar(70);

alter table agency
alter column …

Fig. 2. Comparision of the design and evolution process

1.2 De�ning evolution with a conceptual model

To overcome the gap mentioned above, another approach has to be supported
by tools, the propagation of changes between the model in the version i and the

model in the version i+1. The formal description of model changes can be used
for generating the alter table statements to adapt the database. Although
this idea is not widely accepted in the �eld of databases. it has already been
suggested in some publications, for instance by Hick and Hainauth in [9] and
by Dominguez, Lloret, Rubio, and Zapata in [6]. Nevertheless, until now most
developer use conceptual models for designing new databases and adapt the
databases on a more detailed level by writing alter table statements manually.

But, evolution based on conceptual models has several advantages, simply
speaking all advantages that the conceptual models have for designing new
databases also are relevant for the evolution process.

Based on a conceptual model, technical details can be hidden so that a user
can concentrate on important objects and relationships. The model is capable to
discuss changes with application experts. This article concentrates on the XML
schema evolution based on a conceptual model but this approach can also be
applied to other redesign methods.

If evolution is speci�ed on a conceptual mode, we can guarantee that the
model and the actual software product correspond.

1.3 XML schema evolution

We have to consider that all data which is represented in XML documents also
ages and has to be updated from time to time. Nowadays, lots of applications
use XML for information storage. Accordingly, the necessity for updating XML
documents will increase in the next years. Doing so, not only the content of
the XML documents, but also the structure underlies changes. Changes of the
content can be realized by using update languages. Some XML update languages
were already suggested, for instance by Tatarinov, et al. [31] and by Patrick Lehti
[15]. Several XML database systems can realize updates on XML documents, for
instance Tamino, Galax and Oracle. In January 2006, the W3C also suggested
an XML update language XQuery Update [4].

Much more complicated than updates of XML documents are schema changes
� this process is called schema evolution. Doing schema evolution, the schema is
modi�ed and the XML documents associated to the schema have to be adapted.
We need a method for evolution that is easy-to-handle and ensures schema-
validity of the XML documents after the evolution.

There exist some approaches that either use a language or transformation
rules working on a DTD or on an XML schema. For de�ning this transformation
rules, a user needs to have knowledge about the evolution language as well as
detailed knowledge about the syntax of his XML schema.

Conceptual models are used for designing new schemas. In this article, a
method for XML schema evolution is suggested that is based on a conceptual
model and is implemented as part of a design tool called CoDEX (=Conceptual
Design and Evolution of XML schemas). First, the design steps in a graphical
editor are translated to XML schema evolution steps. Then, the schema evolution
is realized and the XML documents associated to the schema are revalidated and
if necessary updated. The whole process is represented in this article.

This paper is structured as follows: First, related work and similar approaches
are enumerated. An overview of the CoDEX approach is given in section 3. The
conceptual model is introduced in section 4. Section 5 represents the conceptual
schema evolution and its subtasks in detail. It is also shown how XML documents
are adapted onto the schema changes. Section 6 contains a complete example
for the evolution process. The article summarizes with a conclusion and remarks
about future work.

2 Related work

Schema evolution on conceptual models. Although the idea of realizing schema
evolution on a conceptual model is quite obviously there exist only a few pub-
lications dealing with that topic. An overview article by Olivé [23] about infor-
mation systems formulates the demand for such a method. For database design
this approach is suggested by Hick and Hainaut in [8] and [9]. In both men-
tioned articles, a schema evolution based on the conceptual level of a database
was developed and the changes of the user are propagated to the logical and
physical level. This approach was implemented as part of the database design
tool DB-MAIN.

To the best of my knowledge there is only one article suggesting a similar
idea for XML (by Dominguez, Lloret, Rubio, and Zapata [6]) which uses UML as
conceptual model and realizes the schema evolution and document adaptation
by using XSLT programs.

Schema evolution on DTDs or XML schemas. There exist some approaches
that can handle XML schema evolution. These approaches developed languages
for describing evolution steps on an XML schema or on a DTD. Kramer and
Rundensteiner [30, 13] suggest an XML Evolution Management and develop
a language for schema evolution and realize changes on the DTD and XML
documents.

Another approach for XML schema evolution on DTDs or XML schemas was
developed by Guerrini, Mesiti, and Rossi [7, 21]. They assume the schema to be
a graph. Labels in the tree can represent three di�erent states: i) a node has
to be changed, ii) no changes are needed or iii) changes maybe necessary. This
labelled tree is used for an e�cient re-validation of the XML documents and for
updating the documents.

The incremental validation of XML documents is necessary for schema evo-
lution. There are some publications that concentrate on this task. Incremental
schema validation after updates was developed by Milo, Suciu and Vianu [22]
and by Papakonstantinou and Vianu [24].

Nowadays, most available XML database systems don't support schema evo-
lution. An exception is the XML storage solution of Oracle 10g that integrates
a simple support for XML schema evolution. The user has to provide the new
schema and an XSLT script that generates new updated XML documents.

Tamino, being another XML storage solution, supports schema evolution as
follows: all associated XML documents have to be schema-valid according to the
new schema. Doing so, schema relaxations are possible.

Conceptual models for XML design. There are several suggestions for concep-
tual models for designing XML schemas or DTDs. Several approaches introduce
extensions of the Entity Relationship Model in order to design DTDs or XML
schemas, for instance [17, 19, 26, 28, 14]. Other models base on UML class dia-
grams and add special extensions, for example ([3, 10, 5, 27, 1].

3 Overview

Figure 3 shows the subtasks that are involved in the CoDEX approach (Conceptual
Design and Evolution of XML schemas). The CoDEX tool is based on a graphical
model [29]. The focus during the development of the approach was the evolution
of existing schemas, but the CoDEX tool can also be used for the design of new
XML schemas.

adjustment

Fig. 3. Subtasks of the CoDEX tool, �gure from [29]

For the design of new applications the following processes are necessary:

� graphical modeling: The user can specify the schema using the conceptual
model.

� consistency check and correction: Completeness and correctness of the con-
ceptual model is checked.

� export: An XML schema according to the conceptual model is generated.

These subtasks will be explained in section 4 in more detail.
For schema evolution with CoDEX the following processes are needed:

� graphical modeling: The user can specify his changes on the conceptual
model.

� logging: All design decisions are logged and summarized as much as possible
if the same objects had been changed several times.

� XML schema evolution: The XML schema is changed according to the schema
evolution steps.

� XML document update: The associated XML documents are updated accord-
ing to the XML schema evolution steps.

Schema evolution can be done on an available conceptual model. It is also pos-
sible to apply the approach to a given XML schema. In that case, the re-design
process starts with a reverse-engineering, consisting of two additional tasks:

� adjustment of an XML schema: A given XML schema is "normalized". The
schema is translated into the venetian blind design style [18]. All information
are presented as global type de�nitions. This process can be done for each
schema. In some cases, (arti�cial) type names have to be added. These type
names do not in�uence the associated XML documents of a schema.

� import: The CoDEX model for the given XML schema is generated.

All these subtasks are part of the CoDEX tool and are now shortly described.

4 Conceptual model

The basic components of the conceptual model are elements, types, groups, and
modules. The underlying formal model is a graph, the basic components are rep-
resented as nodes. We use a mixed graph [32] because connections between the
basic components can be directed or undirected. Additional information of the
components is stored in properties, which are simple key-value pairs. For reading
and editing properties there exists a table with the corresponding properties for
each component.

Figure 4 shows a section of the conceptual model for the data of a news
agency which is used as running example in this article.

Consistency check and corrections on the conceptual model. The conceptual
models can be checked for completeness and correctness. Some extensions of a
design can be added automatically, for instance we can associate default simple
types to the elements. If no group entity for the child elements of a complex

Fig. 4. Conceptual model for describing news

type is given then a sequence is added as default. The automatic extensions are
similar to the idea of model-driven design.

In other cases, correctness can be tested but it is not possible to automatically
add extensions. For instance, if a group entity is root element in the conceptual
model (which is not allowed in XML schema), an algorithm can detect this case
but cannot solve it. User interaction is necessary for correction.

Export (translation to XML schema) . Conceptual models that are correct and
complete can be translated into an XML schema. For the running example in
�gure 4 the following XML schema is generated:

<?xml version="1.0" encoding="UTF-8"?>
...
<xs:complexType id="cdx_0048" name="newsType">

<xs:sequence id="cdx_0047">
<xs:element id="cdx_0022" name="author" type="xs:string"/>
<xs:element id="cdx_0029" name="context" type="contextType"/>
<xs:element id="cdx_0037" name="content" type="contentType"/>

</xs:sequence>
</xs:complexType>
<xs:complexType id="cdx_0058" name="contextType">

<xs:sequence id="cdx_0057">
<xs:element id="cdx_0030" name="region" type="xs:string"/>
<xs:element id="cdx_0031" name="time" type="xs:string"/>
<xs:element id="cdx_0035" name="event" type="xs:string"/>

</xs:sequence>
</xs:complexType>
<xs:complexType id="cdx_0068" name="contentType">

<xs:sequence id="cdx_0067">
<xs:element id="cdx_0023" name="title" type="xs:string"/>
<xs:element id="cdx_0024" name="text" type="xs:string"/>

</xs:sequence>
<xs:attribute id="cdx_0040" name="id" type="xs:ID"/>
<xs:attribute id="cdx_0041" name="importance" type="xs:integer"/>

</xs:complexType>
...

The resulting XML schema always follows the Venetian blind design style [18]
that means all information are de�ned as global types and element declarations
use these type information.

Import (translation of an XML schema into the CoDEX model). The import of
available XML schemas into the CoDEX tool is also possible, the XML schema
has to be valid then an import can be realized. This import facility is the pre-
requisite for evolving existing XML document collections with the CoDEX ap-
proach.

5 Schema evolution

In this section, we focus on schema evolutions that a user can describe with edit
operations on the conceptual model. Figure 5 shows the subtasks of the approach
that are related to schema evolution, these subtasks are described below.

i) Operations on the conceptual model/ Logging component. For each component
of the conceptual model, the operations add, delete, change, and move can
occur in an evolution process. For elements and modules, the operation rename

exists as well. All design steps of the user are logged in a history component.
The logging component stores all information that was changed, so that all
information needed for the XML schema evolution can be derived from the
log�le.

ii) Minimization and normalization of the operations. Before the XML schema
evolution steps are derived from the design steps a minimization of the number
of steps takes place. This is necessary because design is never a straight-forward
process. It is often done iteratively, a user frequently changes or cancels design
decisions during this process.

For instance, if a user creates a new element wep and renames it during the
design process to wind-energy-plant then it has obviously the same meaning

XML schema
Version i

XML schema
version i+1

CoDEX model
version i

CoDEX model
version i+1

Design
steps

schema evolution
steps:
add, delete, move, …

XML documents XML documents

minimized design steps:
add_entity, delete_edge,
move_module, ..

i)

ii)

iii)

iv)

Fig. 5. Overview on the XML schema evolution process in CoDEX

as creating a new element with the name wind-energy-plant. A rule can be
given that summarizes both operations:

create_element(id, name, content) + rename_element(id, name, name') �!
create_element(id, name', content)

Other rules remove objects that existed only temporarely that means that they
had been added and deleted in one design process cycle. In summary, there
are 53 rules for the combination of evolution steps ([11]). None of the rules is
complicated, they all summarize operations concerning the same objects.

iii) XML Schema evolution steps. The minimized set of changes on a concep-
tual model is translated in XML schema evolution steps. The schema evolution
steps change the XML schema according to the changes that a user made on a
conceptual model.

There exists till now no XML schema evolution language, thus it was nec-
essary to develop such a language. The aim was to be conform with available
W3C recommondations. The language is orientated on the XML schema API
suggested by Litani [16] and on the XQuery Update language, edited by Cham-
berlin, Florescu, and Robie [4] and uses XPath expressions for addressing schema
components. The following examples deliver an impression of this language:

// add a new (optional) attribute
insert attribute '$attributename' of type 'xs:string'

into //$elementname;
set use='optional' of //$elementname/@$attributename;

// change an element declaration
rename //$elementname as '$new-elementname';

set maxOccurs='3' of /$new-elementname;
set minOccurs='1' of /$new-elementname;

// delete an element
delete //$elementname;

The complete schema evolution language can be found in [33]. Further ex-
amples of this language follow in section 6.

The insert of new components in a conceptual model can be realized quite
simple, by generating insert operations with the evolution language. In the
same way changes of the facets in the conceptual model can be handled. The
delete operations can also directly be translated into schema evolution opera-
tions.

More complicated than changes of nodes of the conceptual model are all
changes of the edges. If a directed connection in the conceptual model is deleted,
for instance a connection between an element and a simple type than the
simple type is obtained as global type de�nitions, the type association in the
element declaration is removed.

The contrary operation, the adding of edges causes an association of types
to an element or attribute.

In that way, each of the user actions on the conceptual model is translated
into XML schema evolution steps. Accordingly to the evolution steps the XML
schema �le is adapted.

iv) XML Document Update. If we change an XML schema it is possible that the
XML documents associated to the schema aren't valid any longer. That's why,
we have to check and if necessary to update the XML documents. For that, a
corresponding update operation for the associated XML documents is executed.
The update operations are augmented with all conditions that are tested for
re-validation.

In that way, the evolution of XML schema also causes and realizes a docu-
ment adaptation. The schema changes are propagated to the XML documents
as well. The operation for updating the XML documents can be processed with
all available XML update languages, for instance with [4]. Examples are shown
in section 6.

6 Example

The evolution process is demonstrated with the running example, now. Figure
6 show the model for describing news.

Let us assume the following changes on the running example: Simply speaking
we are going to move all attributes from the type contentType to the type
newsType. Second, we rename the element title into headline and third, we
insert a new element subtitle as child node of content.
These modi�cations are stored in the log �le:

Fig. 6. CoDEX model for describing news

// 1. operation: move of attribute
<connectionReconnected ID="cdx_0042" oldSource="cdx_0037"

oldTarget="cdx_0039" source="cdx_0048" target="cdx_0039"/>

// 2. operation: rename of an element
<propertyChanged key="EmxElement.Name" newValue="headline"

objectID="cdx_0023" oldValue="title"/>

// 3. operation: insert of a new element and connect it
<entityCreated ID="cdx_0071" bounds="Rectangle(539, 669, 144, 39)">

<element maxOccurs="1" minOccurs="1" name="Element_71"/>
<propertyChanged key="EmxElement.Name" newValue="subtitle"

objectID="cdx_0071" oldValue="Element_71"/>
<connectionCreated ID="cdx_0072" source="cdx_0067" sourceDockPos="1"

style="directed" target="cdx_0071"/>

This log�le is normally not visible for a designer, for that not easy to read. The
comments are added in log �le fragment for the reason of readability.

The information inthe log�le is the basis for the evolution process. We can
create the following XML schema evolution steps for the model changes:

1. move /typedefinition::contentType/@*
into /typedefinition::newsType;

2. rename //title as 'headline';
3. insert element subtitle of type "xs:string" after //headline;

Based on these statements XML update operations are generated:

Fig. 7. Modi�ed CoDEX model for describing news

1. do insert //content/@* into ..
do delete //content/@*

2. do rename //title as 'headline';
3. do insert <subtitle/> after //headline

These update operations can be applied onto the XML documents associated
to the schema.
This example shows the complete process from the edit operations in the graph-
ical editor to the schema evolution and XML document update. Although this
example is a quite simple evolution step and contains only three operations the
method can also be applied for more complex changes.

7 Summary

XML Schema evolution is one of the future research �elds. All applications that
are used over longer periods of time sometimes have to be evolved and adapted
to new requirements.

With the CoDEX tool, schema evolution can be realized with the same con-
ceptual model that is used for designing new applications. It is not necessary
that a user speci�es the schema evolution steps directly on the XML schema
syntax. During editing the conceptual model a user can specify the changes, so
that an easy-understandable, user-friendly approach for maintenance of XML
applications is achieved. Based on the changes the XML documents associated
to the schema are updated, too.

Mapping and matching approaches derive di�erences between the new and
the old schema. Based on these di�erences, updates for the XML documents
can be realized. Matching approaches use heuristics for determining similarities.
Accordingly, the results can be incorrect. During schema evolution it is possible
to log the operation of a user, this information is more reliable for adapting the
schema and the XML documents. That is the reason why this article suggests
an extension of a design method for evolution instead of automatic matching
approaches.

The CoDEX model editor is implemented in Java as a plug-in for the open-
source IDE Eclipse. Di�erent Eclipse concepts like properties, preferences, prob-
lem markers are used. The schema evolution and document update are imple-
mented on the basis of eXist and are based on the update language o�ered in
that system. In future, the implementation shall be realized with the update lan-
guage of the W3C. For that, the update statements are additionally generated
in this language yet.

8 Future work

A future plan is the integration of a function that calculates the e�ort of each
evolution step before it is realized. This function shall determine which parts of
the schema are concerned and how many XML documents will be changed by
an evolution step.

This method can realize evolution steps that modify elements or attributes.
It is not possible to modify parts of the XML documents with higher granularity.
For instance, we cannot split an element content into two elements or add the
values of two attributes to a new attribute value. Edit operations on a concep-
tual model cannot describe such changes. If such evolution steps are necessary,
additional other tools have to be employed, for instance several mapping tools
o�er this component. They support manual customization on the level of XML
documents in a comfortable way. The enrichment of the evolution tool with such
additional functionality is another future task.

9 Acknowledgement

I want to thank my students Robert Stephan, Tobias Tiedt, Marcus Oertel,
Christian Will, and Maike Milling for their work that they investigated with
their diploma or study theses on this topic very much.

References

[1] M. Bernauer, G. Kappel, and G. Kramler. Representing XML Schema in UML
- A Comparison of Approaches. In N. Koch, P. Fraternali, and M. Wirsing, edi-
tors, ICWE, volume 3140 of Lecture Notes in Computer Science, pages 440�444.
Springer, 2004.

[2] W. Boehm. A spiral model of software development and enhancement. IEEE
Computer, pages 61�72, May 1988.

[3] D. Carlson. Modeling XML Applications with UML: Practical e-Business Appli-
cations. Addison-Wesley Object Technology Series, 2001.

[4] D. Chamberlin, D. Florescu, and J. Robie. XQuery Update Facility, 2006.
http://www.w3.org/TR/xqupdate/.

[5] R. Conrad, D. Sche�ner, and J.-C. Freytag. XML Conceptual Modelling using
UML. In A. H. F. Laender, S. W. Liddle, and V. C. Storey, editors, Proceedings
of the 19th International Conference on Conceptual Modeling, ER, Lecture Notes
in Computer Science 1920. Springer, 2000.

[6] E. Dominguez, J. Lloret, A. L. Rubio, and M. A. Zapata. Evolving XML Schemas
and Documents Using UML Class Diagrams. In Database and Expert Systems
Applications: 16th International Conference, DEXA, Lecture Notes in Computer
Science, volume 3588, pages 343�352. Springer Berlin / Heidelberg, 2005.

[7] G. Guerrini, M. Mesiti, and D. Rossi. Impact of XML schema evolution on valid
documents. In A. Bonifati and D. Lee, editors, WIDM, pages 39�44. ACM, 2005.

[8] J.-L. Hainaut, V. Englebert, J. Henrard, J.-M. Hick, and D. Roland. Database
Evolution: the DB-Main Approach. In P. Loucopoulos, editor, Entity-Relationship
Approach - ER'94, Business Modelling and Re-Engineering, 13th International
Conference on the Entity-Relationship Approach, Manchester, U.K., December 13-
16, 1994, Proceedings, volume 881 of Lecture Notes in Computer Science, pages
112�131. Springer, 1994.

[9] J.-M. Hick and J.-L. Hainaut. Strategy for Database Application Evolution: The
DB-MAIN Approach. In Conceptual Modeling - ER, volume 2813 of Lecture Notes
in Computer Science, pages 291 � 306. Springer, 2003.

[10] G. Kappel, E. Kapsammer, S. Rausch-Schott, and W. Retschitzegger. X-Ray �
Towards Integrating XML and Relational Database Systems. In A. H. F. Laender,
S. W. Liddle, and V. C. Storey, editors, Proceedings of the 19th International
Conference on Conceptual Modeling, ER, Lecture Notes in Computer Science 1920,
pages 339�353. Springer, 2000.

[11] M. Klettke. Modellierung, Bewertung und Evolution von XML-
Dokumentkollektionen, 2006. eingereicht an der Universität Rostock, Fakultät
für Informatik und Elektrotechnik.

[12] M. Klettke, H. Meyer, and B. Hänsel. Evolution � The Other Side of the XML
Update Coin. In 2nd International Workshop on XML Schema and Data Man-
agement (XSDM), in conjunction with ICDE, 2005.

[13] D. Kramer. XEM: XML Evolution Management. Master's thesis, Worchester
Polytechnic Institute, 2001.

[14] M.-L. Lee, S. Y. Lee, T. W. Ling, G. Dobbie, and L. A. Kalinichenko. Designing
semistructured databases: A conceptual approach. In H. C. Mayr, J. Lazanský,
G. Quirchmayr, and P. Vogel, editors, DEXA, volume 2113 of Lecture Notes in
Computer Science, pages 12�21. Springer, 2001.

[15] P. Lehti. Design and Implementation of a Data Manipulation Processore for an
XML Query Language. Diplomarbeit, Technische Universität Darmstadt, Fach-
bereich Elektrotechnik und Informationstechnik, 2001.

[16] E. Litani. XML Schema API, 2004. http://www.w3.org/Submission/xmlschema-
api/.

[17] B. F. Lóscio, A. C. Salgado, and L. do Rêgo Galvão. Conceptual modeling of XML
schemas. In R. H. L. Chiang, A. H. F. Laender, and E.-P. Lim, editors, WIDM,
pages 102�105. ACM, 2003.

[18] E. Maler. Schema Design Rules for UBL ... and Maybe
for You. In XML conference and exposition, 2002.
http://www.idealliance.org/papers/xml02/dx_xml02/papers/05-01-02/05-
01-02.html.

[19] M. Mani. EReX: A Conceptual Model for XML. In Z. Bellahséne, T. Milo,
M. Rys, D. Suciu, and R. Unland, editors,Database and XML Technologies: Second
International XML Database Symposium, XSym, volume 3186, pages 128�142.
Springer-Verlag, 2004.

[20] J. McCormack. Cse2305 object-oriented software engineering, 2005.
http://www.csse.monash.edu.au/ jonmc/CSE2305/.

[21] M. Mesiti, R. Celle, M. A. Sorrenti, and G. Guerrini. X-Evolution: A System for
XML Schema Evolution and Document Adaptation. In International Conference
on Extending Database Theory (EDBT), Demonstration, 2006.

[22] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML Transformers. In Pro-
ceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pages 11�22, Dallas, Texas, USA, 2000. ACM.

[23] A. Olivé. Conceptual Schema-Centric Development: A Grand Challenge for In-
formation Systems Research. In O. Pastor and J. F. e Cunha, editors, CAiSE,
volume 3520 of Lecture Notes in Computer Science, pages 1�15. Springer, 2005.

[24] Y. Papakonstantinou and V. Vianu. Incremental Validation of XML Documents.
In D. Calvanese, M. Lenzerini, and R. Motwani, editors, Proceedings of the Inter-
national Conference on Database Theory (ICDT), volume 2572 of Lecture Notes
in Computer Science, pages 47�63, Siena, Italy, 2002. Springer-Verlag.

[25] D. L. Parnas. Software Aging. In ICSE: Proceedings of the 16th international
conference on Software engineering, pages 279�287, Los Alamitos, CA, USA, 1994.
IEEE Computer Society Press.

[26] K. Passi, L. Lane, S. K. Madria, B. C. Sakamuri, M. K. Mohania, and S. S.
Bhowmick. A Model for XML Schema Integration. In K. Bauknecht, A. M. Tjoa,
and G. Quirchmayr, editors, EC-Web, volume 2455 of Lecture Notes in Computer
Science, pages 193�202. Springer, 2002.

[27] N. Routledge, L. Bird, and A. Goodchild. UML and XML-Schema. In Thirteenth
Australasian Database Conference, 2002.

[28] A. Sengupta, S. Mohan, and R. Doshi. Extensible Entity Relationship Model-
ing. In XML, 2003. www.idealliance.org/papers/dx_xml03/papers/06-01-01/06-
01-01.html.

[29] R. Stephan. Entwicklung und Implementierung einer Methode zum konzeptuellen
Entwurf von XML-Schemata. Diplomarbeit, Universität Rostock, Institut für In-
formatik, 2006.

[30] H. Su, D. K. Kramer, and E. A. Rundensteiner. XEM: XML Evolution Manage-
ment. Computer Science Technical Report Series, Worchester Polytechnic Insti-
tute, WPI-CS-TR-02-09, Jan. 2002.

[31] I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld. Updating XML. In
Proceedings of the ACM SIGMOD International Conference on Management of
Data, 2001.

[32] E. Wanke and R. Kötter. Oriented Paths in Mixed Graphs. In R. Fleischer and
G. Trippen, editors, ISAAC, volume 3341 of Lecture Notes in Computer Science,
pages 629�643. Springer, 2004.

[33] C. Will. Entwicklung und Implementierung einer Sprache zur Evolution von XML-
Schemata. Diplomarbeit, Universität Rostock, Institut für Informatik, 2006.

