
Integrating a Query Language for Structured and Semi-Structured Data and IR
Techniques

Andreas Heuer Denny Priebe
Database Research Group

Computer Science Department
University of Rostock

D–18051 Rostock
Germany

�heuer, priebe�@informatik.uni-rostock.de

Abstract

In this paper we describe the basic ideas and concepts
behind the Information Retrieval Query Language (IRQL)
that is used as one of the back-ends in the GETESS project.
The front-end provides a user interface which is embedded
in a dialogue system. This dialogue system allows queries
to be formulated in a user friendly (i.e. exploiting a limited
range of natural language) and interactive way. Access to
the analyzed data is provided by IRQL. The principal focus
of IRQL development is the integration of concepts of in-
formation retrieval, database query languages, and query
languages for semi-structured data. Therefore, we will be
able to exploit the structure of documents, if known, and can
additionally use information retrieval techniques regardless
of whether the structure is known or not. Our approach
develops a query language that is compatible with the re-
cently adopted SQL99 standard and information retrieval
clauses (e.g. boolean retrieval). It then integrates features
of database query languages such as (1) exploiting the doc-
ument’s structure and (2) restructuring (including linking of
multiple documents); information retrieval techniques such
as (I) content-based retrieval, (II) ranking, and (III) rele-
vance feedback; and features to also query semi-structured
data. Our data model extends the object-relational model
and additionally supports an abstraction of attributes. That
is, we can use attribute-independent queries as well as
attribute-dependent ones as in RDBMSs. We evaluate IRQL
queries by mapping them to queries supported by existing
systems such as object-relational DBMSs, full-text DBMSs,
or conventional search engines, and post processing the re-
sults supplied by these systems, if necessary.

1 Introduction

During the last years the WWW became generally ac-
cepted as a medium to publish various kinds of information
(documents). In general, this information can be catego-
rized as structured and semi-structured/unstructured. Al-
though storing and querying of structured data (e.g. us-
ing relational DBMSs) are well understood, there is still no
agreement in managing semi-structured data (e.g. data kept
in files; possibly using XML). Keeping this potential hetero-
geneity in mind, it is quite difficult to search for particular
information. On the one hand, there are many search en-
gines (e.g. Altavista or Infoseek) that permit the search for
particular documents as it relates to their content, but these
search engines are often not capable of exploiting the struc-
ture of documents in order to support advanced queries. Ad-
ditionally, often data stored in DBMSs are not taken into ac-
count, although these search engines could benefit from the
features of database query languages. On the other hand,
pure database query languages are also inappropriate for
querying heterogeneous semi-structured data [1, 8] as it re-
lates to documents. These query languages certainly sup-
port operations on structured parts of documents, but the
ability to query semi-structured data is rather limited and
often realized by vendor-specific extensions to the DBMS.

In the GETESS1 [20, 21] project we are developing a
search system that is not only capable of using syntactic
methods to extract information from WWW data, but also
uses the semantics of the data if inferable. This is realized
by building abstracts for each document using a parser that
partially, but robustly understands natural language and an
ontology that represents knowledge specific to the restricted
domain “tourism”. These abstracts are stored in data bases
and queried with a specialized query language. The user in-

1GErman Text Exploitation and Search System

data bases

Search-
system

IRQL
expression

Query
analysis

Query
processing

KA Tool

Ontology
Update

Lexicon
Update

User Interface

Query Processor

Dialogue System

Gatherer

Abstract
Generator

Index
Generator

DB
Extraction

Ontology

Lexicon

Dialog-/
User Profile

Abstract DB Index DB

documents
(HTML, PS, etc.)

Repository

Figure 1: Architecture of GETESS

terface is embedded in a dialogue system that allows queries
to be formulated in a user friendly (i.e. exploiting a lim-
ited range of natural language) way. By means of the ar-
chitecture in Figure 1 we show the interaction of the dif-
ferent components. The front-end of GETESS provides a
user interface that is embedded in a dialogue system. With
this interface, users can interactively formulate queries in a
limited range of natural language that is parsed by a par-
tially, but robustly natural language processing component
and translated into an IRQL expression by the query proces-
sor. This expression is handed to the search system. Its task
is to evaluate the expression using the available abstracts
and indices and return the results to the dialogue system.
The data itself are stored in different data bases (abstract
DB, index DB, DB repository) and filled by the gatherer
at regular intervals. The gatherer is able to create abstracts
from HTML documents and data bases using the natural
language processing component mentioned earlier and to
create the indices required for the information retrieval pro-
cess. All subsystems are influenced by the ontology and
lexicon which provide the required metaknowledge. This
knowledge is acquired with the help of knowledge acquisi-
tion tools (KA tools).

In the following sections we describe the basic concepts
of the Information Retrieval Query Language (IRQL). The
principal focus of IRQL development is to integrate the fea-
tures of database query languages such as (a) access to the
data’s structure, (b) use of type specific information, (c) re-
structuring, and (d) linking of data, features of query lan-
guages for semi-structured data, and information retrieval
techniques such as (i) content-based retrieval, (ii) vague
queries, (iii) ranking, and (iv) relevance feedback into a sin-
gle query language. Thus, IRQL allows us to query both
structured and heterogeneous semi-structured data related
to documents.

Our approach is to store our data in existing systems such
as object-relational DBMSs, relational DBMSs, or full-text
DBMSs. Therefore, we implement IRQL on top of these
systems. In principle, we evaluate IRQL queries by map-
ping them to the query languages supported by the corre-
sponding platform as illustrated in Figure 2. Obviously, we
have to post process the results delivered by these platforms
as none of the systems support all of the IRQL features.
This post-processing is either done by wrappers or com-
pensators. Essentially, the difference between wrappers and
compensators is that compensators are “big” wrappers, i.e.

2

SQL99IR

IRQL

Compensator

IR

Compensator

RDBMS

Wrapper

ORDBMS

Figure 2: Implementation of IRQL

compensators encapsulate systems that support only a very
limited set of the features of IRQL. To be more concrete,
assume that we want to evaluate an IRQL query on top of a
relational database system and the query includes selection,
projection, proximity search, and ranking functions. First,
we map the query’s relational parts (e.g. selection and pro-
jection) of this query to the SQL supported by the RDBMS
and evaluate the query. As a result, we obtain a superset
of the “real” result. Now we ask the compensator to com-
pute the answer to the IRQL query using the result from
the RDBMS and the parts of the IRQL query that could not
be mapped to the RDBMS query language (e.g. proximity
search and ranking).

The rest of this paper is organized as follows: We de-
scribe our data model in Section 2. Section 3 presents the
syntax of IRQL using some examples. In Section 4, we dis-
cuss some related work and compare other approaches with
IRQL. We conclude with a summary in Section 5 and men-
tion some future works.

2 Data Model

The principal focus of IRQL development is to imple-
ment a query language that allows to query both structured
data (this implies that IRQL adopts features from database
query languages) and semi-structured data. Additionally,
IRQL also includes information retrieval techniques. Apart
from the separate use of these query types, IRQL integrates
the different possibilities in an orthogonal way.

Our data model extends the object-relational data model.
There are atomic types such as2 integer, float,

2We plan to support a large subset of the atomic types mentioned in [3].

boolean, and string. Composite types include the
collections set, bag, list, and array as well as the
struct constructor. Furthermore, there is a named type
constructor that we use to model data like XML (for exam-
ple) and apply type specific operations to instances of this
type. In order to model heterogeneous semi-structured data,
we introduce a composite type doc similar to the struct con-
structor, but querying data of this type does not produce any
type checking errors. Within a doc type, we also allow for
referencing non-existent labels. We illustrate the doc type

name place rooms

Neptun Warnemünde �

Hübner Warnemünde 95
Mecklenburger Hof Rostock 21
Atrium Hotel Krüger Sievershagen 59

Figure 3: Structured instance R1

by an example. Figure 3 shows a structured instance of type

set�struct(name:string, place:string,
rooms:integer)�.

Figure 4 shows a semi-structured instance containing two
tuples. The first tuple type could be

struct(name:string,
equipment:set�string�,
drinks:set�string�,
price:struct(single:integer,

double:integer))

while the second tuple could be of type

3

name equipment drinks
price

single double

Hübner bathroom beer 195 235
shower wine
WC
...

name equipment
price

cards
single double twin

Krüger bathroom 95 150 185 Visa
shower Diners Club
WC
phone
...

Figure 4: Heterogeneous instance R2

struct(name:string, equipment:set�string�,
price:struct(single:integer,

double:integer,
twin:integer)

cards:set�string�).

In our approach, heterogeneous data is modelled as doc
type. Therefore, the tuples from Figure 4 are typed as

doc(name:string,
equipment:set�string�,
drinks:set�string�,
price:doc(single:integer,

double:integer))

and

doc(name:string, equipment:set�string�,
price:doc(single:integer,

double:integer,
twin:integer)

cards:set�string�).

As we cannot unify two semi-structured types in general,
but need some kind of notation for semi-structured types,
we omit the attribute-value pairs from the doc type and in-
stead use doc for both types. Therefore, the instance from
Figure 4 could be typed as set�doc�. Instances of the doc
type are only subject to limited type checks so that, for ex-
ample, ���������� only delivers the credit cards accepted
by the Krüger hotel.

While the modelling of semi-structured heterogeneous
data as previously discussed is not new (see e.g. WebOQL
[5] and its “web” data type), our main contribution concern-
ing the data model is to allow a set of attributes to be ab-
stractly referenced by single attribute names as illustrated
in Figure 5.

For example, we introduce two default attributes if the
corresponding data originated in web documents: source

indicates the document’s URL and complete content indi-
cates the full text of the original page. As Figure 5 shows,
complete content is an abstraction of a set of different at-
tributes, e.g. metadata such as authors and text. Text, in
turn, is another abstraction of further attributes such as the
abstract or the references of the modelled article.

In contrast to object-oriented or object-relational data-
base models, the attributes complete content and text are
no tuple-valued attributes. For example, complete content
would consist of two different components metadata and
text in the object models. Here, complete content is consid-
ered as one text value again. The advantage of this kind of
abstraction operator is the usability for information retrieval
operations. If useful, the complete content value can be
seen as one atomic value. Another advantage of the abstrac-
tion of attributes is the possibility to easier refine queries if
queries against a specific attribute level yield too few or too
many objects in the result. In the case of too few results, we
can automatically use a higher level of abstraction for the
same query. Using tuple constructors instead, would leed to
a very complicated reformulation of the query.

The problem that object-oriented and object-relational
models (that are used as implementation models) do not
support this kind of abstraction is hidden from the user:
Our abstraction operator is implemented on top of existing
object-oriented and object-relational concepts.

3 Language

The aim of IRQL development is to integrate database
query languages, query languages for semi-structured data,
and information retrieval techniques. Similar to Lorel, our
approach is to realize a query language in the style of SQL,
but we additionally support information retrieval techniques
by adding new clauses. Like some of the query languages
mentioned in Section 4, we also change the type checking
rules of SQL to also support querying semi-structured het-
erogeneous data.

Because of these demands, we take the recently adopted
SQL99 standard [3, 4] as a starting point. We plan to im-
plement a large subset of the proposed syntax in order to be
able to answer queries conforming to this standard. Using
examples, we subsequently show possibilities for querying
structured and semi-structured data and integrating infor-
mation retrieval techniques into IRQL.

3.1 Structured and Semi-Structured Data

The data model described in Section 2 supports querying
structured and semi-structured data. Structured composite
data are modelled as elements of the struct data type and
are therefore subject to the strong type checking as found in
e.g. SQL99. Semi-structured data are modelled as elements

4

abstract referencesyear

uni-rostock.de/2000/
http://e-lib.informatik. Andreas Heuer

Denny Priebe
2000

authors title

In this paper we
describe the basic
ideas and concepts
behind the ...

During the last years the
WWW became generally
accepted as a medium to
publish various kinds of
information (documents).
...

Querying Semi-Structured
Data. In Foto N. Afrati and
Phokion Kolaitis, editors,
Database Theory - ICDT’97
...

source complete_content

metadata text

sections appendixarticle

document

DBIS/IRQL/irql.ps

[1] Serge Abiteboul.

...

Integrating
a Query
Language for
Structured
and Semi-

Figure 5: Abstract attributes

of a special data type (doc). We modify the type check-
ing rules for instances of this data type3 so that meaningful
queries are possible, even if the schema is not known or
only partially known. These modifications include: (1) in-
compatible data types are casted to compatible types, if nec-
essary and (2) in heterogeneous data, non-existent attributes
may be referenced. The concrete semantics are dependent
on the type operation used. For example, a non-existent at-
tribute referenced in a projection is ignored for each tuple it
does not appear in. Therefore, the operation’s result is again
heterogeneous. Selection predicates referencing such at-
tributes are evaluated to false. (3) Partially known schemata
can be queried using path expressions and path variables.
For example, the query

select r.name, ##z, r.cards
from R2 r, r.price.�.*�z
where ##z � 200

name single double

Hübner 195 235

name single double twin cards

Krüger 95 150 185 Visa
Diners Club

Figure 6: Heterogeneous result

results in the heterogeneous instance shown in Figure 6.
R2 denotes the instance from Figure 4. The elements
of this set are typed as doc and are therefore subject to
the type checking rules mentioned earlier. In the from
clause, regular path expressions are used and the path
variable � is declared. The regular path expression �.*�
expands to all existing attributes below price. The ap-
pended (optional) label � denotes the corresponding vari-
able name. The expression ##z dereferences the path vari-

3Essentially, we adopt the techniques (primarily Lorel’s) used in exist-
ing query languages for querying semi-structured data.

able � and is substituted by the complete paths (in this ex-
ample R2.price.single, R2.price.double for the first tuple, as
well as R2.price.single, R2.price.double, R2.price.twin for
the second tuple). The attribute cards referenced in the se-
lect clause is ignored while processing the first tuple as
there is no such attribute there. If one or more prices are
string types, these prices would have to be converted to nu-
meric values to evaluate the predicate ##z � 200. If such
a conversion is not possible, the predicate is evaluated to
false.

name
price

single double

Hübner 195 235
Krüger 95 150

Figure 7: Instance R3

The integration of structured and semi-structured data is
realized by modelling these data as instances of different
data types. For example, let the instance shown in Figure 7
be of type

set�doc(name:string,
price:struct(single:integer,

double:integer))�.

The query

select r.price.single, r.address
from R3 r

delivers the prices of all single rooms because the non-
existent attribute address is directly ignored within a doc
type. But the query

select r.price.twin, r.address
from R3 r

leads to a runtime error because the price is modelled as a
struct type where non-existent attributes may not be refer-
enced.

5

The previously illustrated differences between opera-
tions on structured and semi-structured data can be adapted
in order to be valid for other operations, too.

3.2 Extensions

In IRQL, there is one basic extension describing all
known documents. We call this extension d world. In order
to avoid considering all these documents in every query, we
introduce some possibilities to create further (e.g. smaller)
extensions. Useful criteria include (1) information about
how or whether a document can be reached via a partic-
ular path, (2) the language of documents, (3) the possibly
named document types, and (4) the document’s domain. We
express each of these as an extension to the from clause.
The extension (coll) of documents that are reachable start-
ing from a given URL is determined by

�coll� REACHABLE FROM �URL�
[DEPTH �value�] [LOCAL].

As options, a maximum path length (DEPTH parameter)
can be specified or only local documents can be chosen. All
documents in a given language can be determined by

�coll� IN LANGUAGE �lang�.

The clause

�coll� OF [NAMED] TYPE �tycon�

creates an extension of documents that meet the specified
type condition. If the keyword NAMED is omitted, tycon
stands for a type constructor like the struct or doc con-
structor, otherwise it is a label like postscript (PS) or XML
that is modelled using the named type constructor men-
tioned in Section 2. Finally,

�coll� OF DOMAIN �domain�

determines the extension of all documents of a given do-
main (e.g. tourism).

3.3 Information Retrieval

In the following, we describe a further extension to
SQL99; namely predicates that implement information re-
trieval techniques (e.g. content-based retrieval, soundex and
proximity search, term weighting and ranking of query re-
sults). As our data model integrates structured and semi-
structured data, these possibilities are applicable to both
structured and semi-structured data.

3.3.1 Content-based Retrieval

We denote content-based retrieval by the clause

�attribute� CONTAINS �text�
[ATLEAST �value�] [ATMOST �value�]
[WITH WEIGHT �value�]
[CASE SENSITIVE] [SUBSTRING]
[(�value� � NO) ERRORS].

The following optional parameters exist: (1) ATLEAST,
ATMOST specifies how often text must occur in attribute.
If the number of occurrences of text is not within the spec-
ified bounds, the predicate is evaluated to false. If one or
both of the parameters are omitted, no limit is assumed.
(2) WITH WEIGHT specifies the weight of the query term.
The default value is a weight of one. (3) By default, the
search is case insensitive. This can be changed by speci-
fying the CASE SENSITIVE parameter. (4) SUBSTRING
specifies not only matching word bounds (e.g. spaces) but
also searching for any occurrence of the given substring.
(5) There is also a possibility for considering typing errors
(see glimpse [12] how this can be realized) by specifying
a value for the ERRORS parameter. By default, no typ-
ing errors are considered. The values of text can be either
keywords or phrases. Furthermore, we support regular ex-
pressions (wildcards) here.

3.3.2 Soundex

The soundex algorithm allows the search for phonetically
similar keywords or phrases. We denote the soundex search
by

�attribute� SOUNDEX �text�
[ATLEAST �value�] [ATMOST �value �].

The meaning of ATLEAST and ATMOST can be taken
from Section 3.3.1. Further parameters mentioned there are
not meaningful within the context of a soundex search.

3.3.3 Proximity

The next supported concept of content-based retrieval is the
proximity search. Using a proximity search, it is possible to
specify the distance between two keywords or phrases. The
denotation is as follows:

�attribute� CONTAINS
�text� [WITH WEIGHT �value�]
[�value� �unit�] BEFORE � AFTER �text� [WITH
WEIGHT �value�]
[ATLEAST �value�] [ATMOST �value�]
[CASE SENSITIVE] [SUBSTRING]
[(�value� � NO) ERRORS].

6

Here, we only describe the new parameters. The others can
be found in Section 3.3.1. The new parameter unit can be
substituted by a type-dependent unit. For example, if � is a
LATEX document and a method exists to split this document
into sections, then

d CONTAINS ‘‘related work’’
2 SECTIONS BEFORE ‘‘conclusion’’

is a valid predicate that checks whether � contains the
phrase “related word” not more than 2 sections before the
keyword “conclusion”.

3.3.4 Ranking

We support ranking results by user-defined criteria. Syntac-
tically, this is denoted by

RANK BY ��� � � � � ��
[LIMIT TO �value�]

The �� denote user-defined functions that define the cal-
culation of the retrieval status value (RSV). The RSV is an
attribute that is introduced by the rank by clause and, af-
ter calculating this value, the result is sorted by RSV. Al-
though we next plan to support the vector space model, we
don’t need to change our syntax if we implement a proba-
bilistic model, as the following example demonstrates:

SELECT RSV, name
FROM hotels
RANK BY stars=5, beachdist=0

In this query we define a ranking using boolean predicates.
These predicates are not evaluated to true or false, but de-
fine the “best” hotel. Thus, the retrieval status value of one
is assigned to a five-stars-hotel directly situated at the beach.
Using probabilistic methods, the other hotels are ranked ac-
cordingly.

The optional part of the rank by clause is used to limit
the number of returned elements to value. By default, the
number of elements is unlimited.

3.3.5 Compatibility with DBQLs and Information Re-
trieval

On the one hand, compatibility with SQL is achieved if
there are no semi-structured data, and therefore, no doc
type data in any of the extensions queried. In this case, any
query that is a valid query within the supported subset of
SQL99 is also a valid IRQL query and delivers the same
result. On the other hand, compatibility with information
retrieval expressions is achieved by transparently mapping
these expressions to IRQL queries, as the following exam-
ple demonstrates: Assume we are interested in a hotel near
the beach. Using one of the search engines, we would prob-
ably enter

hotel and beach.

This expression is also accepted by IRQL and transparently
mapped to4

select �default projection�
from �default extension�
where �default attribute� CONTAINS “hotel” AND

�default attribute� CONTAINS “beach”.

The default values can be adjusted within the IRQL
shell. A good choice would be to use source,title as de-
fault projection, d world as default extension, and com-
plete content as default attribute. In this simple example
the resulting query

select source,title
from d world
where complete content CONTAINS “hotel” AND

complete content CONTAINS “beach”

delivers the expected information.

4 Related Work

IRQL integrates concepts from database query lan-
guages, query languages for semi-structured data, and in-
formation retrieval. In this section, we discuss some query
language proposals that are related to these areas (i.e. we
focus primarily on query languages for semi-structured and
web data) and compare them with our approach. We do
not discuss XML query languages here because these query
languages don’t consider the integration of information re-
trieval techniques and, in principle, XML data can also be
queried using some of the following query languages.

Information Retrieval

Most of the existing search engines (e.g. Altavista or
Infoseek) use information retrieval techniques to search for
particular (web) documents. Users describe their search cri-
teria by entering keywords, phrases, or combinations us-
ing boolean operators. However, these search engines don’t
normally take the document’s structure into account, and
only selections are primarily supported. Features that are
typical for DBMSs (and also for IRQL) like restructuring
(e.g. projection) or joins are still missing.

Access to the document structure is supported by
freeWAIS-sf [18, 17]. Documents can be partitioned into
a set of attribute-value pairs. The set of possible attributes
is defined by the document type. One of the pre-defined
types is HTML and further types can be defined by the user.

4For simplicity, we ignore the ranking.

7

Queries are also limited to selections, but parts of the doc-
ument can be queried via attribute names. Users can de-
scribe their search criteria using free text, phrases, wild-
cards, soundex and proximity expressions, as well as com-
binations of these using boolean operators. Comparisons
of numeric values are supported, too. Besides the access
to the document’s structure in IRQL, we also allow for the
restructuring of data.

Query languages for semi-structured data

In the past, the disadvantages of exclusively using in-
formation retrieval techniques to query semi-structured data
has been pointed out by several authors. As a result, there
are numerous proposals and implementations that also inte-
grate concepts of database query languages. A survey can
be found in [10].

Lorel [2] is the query language of the Lore system [16].
Syntactically, Lorel is based on OQL. Semi-structured data
are supported by using OEM graphs as the data model and
by extending OQL with appropriate features. These ex-
tensions include (a) implicit type casts (type coercion) and
(b) regular path expressions. Path expressions and path
variables support queries on unknown or partially known
schemas and on the schema itself. Implicit type casts, called
type coercion, address the heterogeneity of semi-structured
data. Some variants of content-based retrieval (e.g. soundex
search) are provided by corresponding predicates. The
drawback of this data model is the missing support of or-
dered collections5. As a consequence, for example, no rank-
ing criteria can be specified at the language level.

WebSQL [6] is based on the relational model and sup-
ports an SQL-like query language. Additional features of
WebSQL include dynamic creation of extensions based on
content and link structure of web documents, and path ex-
pressions. HTML tags are treated as attribute names in or-
der to access parts of web data. The restructuring of HTML
pages is not supported.

Compared with OEM graphs, WebOQL [5] uses an im-
proved data model. Hypertrees facilitate the modelling of
nested structures and further support ordered collections.
Using the “web” as a data type is the key to providing a
number of operations for restructuring data. The query lan-
guage is based on OQL and provides some further possi-
bilities, e.g. the creation of query results. Content-based
retrieval is supported by a grep operator. In our approach,
we support further means of information retrieval, such as
term weighting and ranking.

UnQL [7] uses a graph-based data model. The query
language supports selection, projection, join, and grouping,

5Recently, Lorel’s data model has been extended to support XML data
[11]. Therefore, ordered subelements can now be modelled. To the best of
our knowledge, it is not possible to express user-defined rankings in Lorel
like it is in IRQL.

as well as path expressions. Both modelling of ordered data
and content-based retrieval are not supported.

W3QL [13] is the SQL-like query language of W3QS.
The focus of this query language’s development is the
reuse of available tools. For example, predicates that real-
ize content-based retrieval are implemented using external
tools. Both nesting of queries and restructuring of data are
not supported.

The aim of the development of the Strudel query lan-
guage StruQL [9] is to provide means for restructuring ex-
isting data. In StruQL, semi-structured data are modelled
as an OEM graph. The supported query operations include
navigation using path expressions, projection, and selection
as well as operations for restructuring of existing graphs and
for creation of new graphs. In principle, user-defined predi-
cates could be used to implement content-based retrieval.

WebLog [14] is based on SchemaLog and supports ac-
cess to the structure of documents and content-based re-
trieval by using built-in or user-defined predicates. The re-
structuring of data is supported, too. As in IRQL, it is pos-
sible to express recursive queries.

In WQL [15], both the web and the structure of the indi-
vidual documents are modelled. The query language imple-
ments projection, selection, sorting, and grouping. Content-
based retrieval and querying the structure of web documents
are supported. From our point of view, missing features are
dynamically creating extensions, nesting, and restructuring.

Data base query languages

Apart from the query languages for semi-structured data
mentioned in this section, there are also proposals to extend
DBMSs. For example, the SQL/MM proposal [19] defines
a data type full text whose operations support content-based
retrieval for those data that are stored using this data type.
Different implementations are made available by commer-
cial companies in the form of text extenders, data blades,
and so on.

Figure 8 summarizes the features of the query languages
mentioned in this section. We use the following notation to
assess the features: � supported, � supported with limita-
tions, � supported to some extent, and � not supported.

5 Conclusion and Future Work

In this paper we present the basic ideas and concepts be-
hind the Information Retrieval Query Language (IRQL) that
is used in the GETESS project by a dialogue system with a
natural-language-like user interface to query the summaries
of linguistically analysed web documents. Our data model
distinguishes structured and semi-structured heterogeneous
data based on type information and supports an abstraction
of attribute names. IRQL integrates concepts of database

8

Lorel WebOQL WebSQL UnQL W3QL

data model OEM graph hyper tree relational labeled graph labeled graph
language style OQL OQL SQL structural recursion SQL
path expressions � � � � �

type coercion � � � � �

updates � � � � �

strong typing � � � � �

recursion � � � � �

content bases retr. � � � � �

ranking � � � � �

term weighting � � � � �

ordered collections � � � � �

linking different docs. � � � � �

querying the schema � � � � �

StruQL WebDB WebLog freeWAIS-sf IRQL

data model labeled graph object-relational relational relational object-relational
language style Datalog SQL Datalog boolean retrieval SQL
path expressions � � � � �

type coercion � � � � �

updates � � � � �

strong typing � � � � �

recursion � � � � �

content based retr. � � � � �

ranking � � � � �

term weighting � � � � �

ordered collections � � � � �

linking different docs. � � � � �

querying the schema � � � � �

Figure 8: features of some query languages

query languages, query languages for semi-structured data,
and information retrieval techniques. The starting point
of IRQL development is SQL99, which we extend with
new clauses to integrate information retrieval techniques.
Furthermore, we modify the type system to support semi-
structured heterogeneous data. IRQL is built on top of ex-
isting systems such as object-relational DBMSs, relational
DBMSs, or full-text DBMSs. The current prototype imple-
mentation has been built on top of DB2 and its text extender.

To the best of our knowledge, there is no similar proposal
that attempts to integrate features of these three areas.

Future works include the complete formalization of the
query language and the development of an algebra.

Acknowledgements

The GETESS project is funded by the German Ministry
of Education and Research (Bundesministerium für Bildung
und Forschung; BMBF) under grant number 01IN802.

References

[1] S. Abiteboul. Querying Semi-Structured Data. In F. N.
Afrati and P. Kolaitis, editors, Database Theory - ICDT

’97, 6th International Conference, volume 1186 of Lecture
Notes in Computer Science, pages 1–18, Delphi, Greece,
Jan. 1997. Springer Verlag.

[2] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L.
Wiener. The Lorel Query Language for Semistructured
Data. International Journal on Digital Libraries, 1(1):68–
88, 1997.

[3] ANSI/ISO/IEC International Standard (IS) Database Lan-
guage SQL – Part 1: SQL/Framework, ISO/IEC 9075-
1:1999 (E), Sept. 1999.

[4] ANSI/ISO/IEC International Standard (IS) Database Lan-
guage SQL – Part 2: Foundation (SQL/Foundation),
ISO/IEC 9075-2:1999 (E), Sept. 1999.

[5] G. O. Arocena and A. O. Mendelzon. WebOQL: Restruc-
turing Documents, Databases, and Webs. In Proceedings of
the Fourteenth International Conference on Data Engineer-
ing, pages 24–33, Orlando, Florida, USA, Feb. 1998. IEEE
Computer Society Press.

[6] G. O. Arocena, A. O. Mendelzon, and G. A. Mihaila. Ap-
plications of a Web Query Language. In Proceedings of the
6th International WWW Conference, Santa Clara, Califor-
nia, 1997.

[7] P. Buneman, S. B. Davidson, G. G. Hillebrand, and D. Su-
ciu. A Query Language and Optimization Techniques for
Unstructured Data. In H. V. Jagadish and I. S. Mumick, ed-
itors, Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, volume 25(2) of SIG-

9

MOD Record, pages 505–516, Montreal, Quebec, Canada,
June 1996.

[8] S. Cluet. Modeling and Querying Semi-Structured Data. In
M. T. Pazienza, editor, Information Extraction: A Multidis-
ciplinary Approach to an Emerging Information Technol-
ogy, International Summer School, SCIE-97, volume 1299
of Lecture Notes in Computer Science, pages 192–213, Fras-
cati, Italy, 1997. Springer Verlag.

[9] M. F. Fernandez, D. Floresu, A. Y. Levy, and D. Suciu. A
Query Language for a Web-Site Management System. In
SIGMOD Record, volume 26(3), pages 4–11, 1997.

[10] D. Florescu, A. Y. Levy, and A. O. Mendelzon. Database
Techniques for the World-Wide Web: A Survey. In SIG-
MOD Record, volume 27(3), pages 59–74, 1998.

[11] R. Goldman, J. McHugh, and J. Widom. From Semistruc-
tured Data to XML: Migrating the Lore Data Model and
Query Language. In S. Cluet and T. Milo, editors, ACM SIG-
MOD Workshop on The Web and Databases (WebDB’99),
pages 25–30, Philadelphia, Pennsylvania, USA, June 1999.
INRIA. Informal Proceedings.

[12] Harvest. http://harvest.transarc.com.
[13] D. Konopnicki and O. Shmueli. W3QS: A Query System

for the World-Wide Web. In U. Dayal, P. M. D. Gray, and
S. Nishio, editors, VLDB’95, Proceedings of 21th Interna-
tional Conference on Very Large Data Bases, pages 54–65,
Zurich, Switzerland, Sept. 1995. Morgan Kaufmann Pub-
lishers.

[14] L. V. S. Lakshmanan, F. Sadri, and I. N. Subramanian. A
Declarative Language for Querying and Restructuring the
WEB. In Proceedings: Sixth International Workshop on
Research Issues in Data Engineering — Interoperability of
Nontraditional Database Systems, IEEE-CS 1996, pages
12–21, New Orleans, Louisiana, USA, Feb. 1996.

[15] W.-S. Li, J. Shim, K. S. Candan, and Y. Hara. WebDB: A
Web Query System and its Modeling, Language, and Im-
plementation. In Proceedings of the IEEE Forum on Re-
search and Technology Advances in Digital Libraries, IEEE
ADL’98, pages 216–227, Santa Barbara, CA, USA, Apr.
1998.

[16] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and
J. Widom. Lore: A Database Management System for
Semistructured Data. In SIGMOD-Record, volume 26(3),
pages 54–66, Sept. 1997.

[17] U. Pfeifer. freeWAIS-sf. Universität Dortmund, Oct. 1995.
Manual of the enhanced freeWAIS distribution.

[18] U. Pfeifer, N. Fuhr, and T. Huynh. Searching Structured
Documents with the Enhanced Retrieval Functionality of
freeWAIS-sf and SFgate. In Proceedings of The Third Inter-
national World-Wide Web Conference, Darmstadt, Germany,
Apr. 1995.

[19] ISO Working Draft, SQL Multimedia and Application Pack-
ages (SQL/MM), Part 2: Full-Text, Sept. 1995.

[20] S. Staab, C. Braun, I. Bruder, A. Düsterhöft, A. Heuer,
M. Klettke, G. Neumann, B. Prager, J. Pretzel, H.-P.
Schnurr, R. Studer, H. Uszkoreit, and B. Wrenger. A Sys-
tem for Facilitating and Enhancing Web Search. In IWANN
’99 — Proceedings of International Working Conference on
Artificial and Natural Neural Networks, Alicante, ES, 1999.

[21] S. Staab, C. Braun, I. Bruder, A. Düsterhöft, A. Heuer,
M. Klettke, G. Neumann, B. Prager, J. Pretzel, H.-P.
Schnurr, R. Studer, H. Uszkoreit, and B. Wrenger. GET-
ESS — Searching the Web Exploiting German Texts. In
M. Klusch, O. Shehory, and G. Weiss, editors, Cooperative
Information Agents III, Proceedings 3rd International Work-
shop CIA-99, volume 1652. Springer Verlag, July 1999.

10

