
Technical Report CS-01-15

Universität Rostock
Fakultät für Informatik und Elektrotechnik

Institut für Informatik
Lehrstuhl für Datenbank- und Informationssysteme



Generating Privacy Constraints for Assistive Environments H. Grunert, A. Heuer

Generating Privacy Constraints for Assistive Environments

Hannes Grunert, Andreas Heuer

Database Research Group
University of Rostock

18051 Rostock
(hg|ah)(at)informatik.uni-rostock.de

Long version of a four-page conference paper for PETRA 2015,
published as ACM 978-1-4503-3452-5/15/07,

DOI: http://dx.doi.org/10.1145/2769493.2769542

20. May 2015

Abstract: Smart environments produce large amounts of data by a plurality of sensors,
which constantly track our activities and desires. To support our daily life, assistive
environments process these data to calculate our intentions and future actions. In many
cases, more information than required are generated and processed by the assistive
system. Thereby, the system can learn more about the user than intended. By this, the
users’ right to informational self-determination is injured, because they lose control
how their data is used.

In this paper, we present a model to let the user formulate requirements to protect
his privacy in smart environments. These requirements are transformed into multiple
integrity constraints, which ensure privacy.

1 Introduction

Assistive systems are designed to support the user at work (Ambient Assisted Working)
and at home (Ambient Assisted Living). Sensors collect information about the current
situation and actions of the users. These data are stored by the system and linked to other
data, for example social network profiles. Based on the obtained information, preferences,
patterns of behavior and future events can be calculated. Furthermore, intentions and fu-
ture actions of the users are derived, so that the smart environment can react independently
to satisfy their needs.

Assistive systems [Wei91] often collect much more information than needed. In addition,
the user usually has no or only a very small effect on the storage and processing of his
personal data. As a result, his right to informational self-determination is violated. In
extending an assistive system by a data protection component, which checks the privacy
claims of the user against the required information of the system, this problem can be
resolved.

ISSN: 0944-5900, Nummer: CS-01-15 1



Generating Privacy Constraints for Assistive Environments H. Grunert, A. Heuer

Figure 1: Use case scenario: The Smart Appliance Lab (SmartLab) at the University of Rostock.
Various, partially invisible, sensors are tracking the users to support team meetings and lectures.

Two main principles of data protection are data minimization and data avoidance. Sec-
tion 3a of the German Federal Data Protection Act [Bun10] defines data avoidance as the
requirement to collect, process and use as little personal information as possible. This in-
cludes the design of information systems as well as the data processing itself. By means of
a data-avoiding sharing of sensor and context information towards the analysis tools of the
assistive system, not only the privacy-friendliness of the system is improved. By reducing
the data by selection, aggregation and compression at the sensor itself, the efficiency of the
system can be increased. The privacy claims and the required information of the analysis
tools can be implemented as integrity constraints in the database system that stores the
data collected by the sensors. Due to the integrity constraints, the necessary algorithms for
preprocessing and anonymization can be run directly on the database.

The privacy module examines the users’ requirements and compares them with the re-
quired information of the system. Instructions for selection, compression and aggregation
are generated so that only the required data will be stored and processed in the system. A
query can be decomposed into multiple subqueries which can achieve sub-goals already at
the sensor level. Thus, a transfer of all data to a superior computing unit, which executes
the actual analysis algorithms (see Figure 2), can be dispensed.

Our research is motivated by the following questions:

1. Can privacy techniques be directly executed in database systems?

ISSN: 0944-5900, Nummer: CS-01-15 2



Generating Privacy Constraints for Assistive Environments H. Grunert, A. Heuer

Figure 2: Data processing in assistive systems can be divided into five steps. Information is passed
from the bottom (data collection) to the top (data analysis). The red lines indicate where the level of
information detail should be reduced.

2. Is it possible to execute them together with analysis functionalities without losing
too much precision?

3. Can the execution and response time of the (assistive) system be reduced by pro-
cessing less data?

The aim of our work is to develop a privacy-friendly query processor that implements
the aspects of data minimization and data avoidance. The processor is integrated within
the PArADISE 1 framework. The evaluation of our framework is based on the sensor
and context information collected at the Smart Appliance Lab of the graduate program
MuSAMA 2.

In this article we present the language used to formulate the data protection requirements.
In addition, we give an overview of the concept of the query processor. The rest of the
paper is organized as follows: In the second section we present the architecture of our
privacy framework. Our Privacy Policy for Smart Environments (PP4SE) and mechanisms
for its automatic generation is outlined in section three. Section four gives a brief overview
of the related work. Finally, we draw our conclusions and an outlook on future work.

1Privacy-aware assistive distributed information system environment
2Multimodal Smart Appliance ensembles for Mobile Application

ISSN: 0944-5900, Nummer: CS-01-15 3



Generating Privacy Constraints for Assistive Environments H. Grunert, A. Heuer

2 PArADISE

PArADISE is a tool to support developers of assistive systems and –later on– users of
assistive systems by performing queries and analyzing large amounts of sensor data. The
system is privacy-aware by pooling existing data protection concepts and algorithms as
well as developing and implementing new ideas into a database framework. For example,
we developed an algorithm to ensure k-anonymity over multiple queries [Gru14a] and
an algorithm to efficiently detect quasi-identifier attributes in high dimensional databases
[GH14].

We introduced the basic idea of the framework briefly in [Gru14b]. In this paper, we
present some of the individual components of the system in detail.

2.1 Background

PArADISE implements a privacy-aware query-processor-engine, which is used in dynamic
ad-hoc sensor-networks. The basic architecture of the framework is illustrated in Figure 3.
The user can set up privacy policies which are compared with the queries of the assistive
system. The information flow is checked before and after the data is queried.

Important aspects are the time and space complexity, since the sensors may not have
enough processing power or main memory to modify the data in soft or even hard real
time. Accordingly, it must be decided at runtime, a) which algorithms are applied and b)
whether preprocessing on a particular node can be computed at all. In general, the com-
pression of the data should take place as close as possible to the sensor; in the best case
where the data is generated.

Non-anonymized data should only be transferred if this is explicitly required or the modifi-
cation on the affected node is not possible (aspect of data minimization). In order to decide
if the anonymization can be computed on a specific sensor node, the processor consults
hardware properties like

• CPU-performance and -usage,

• available and maximum main memory and

• available and maximum hard disc memory.

These properties are checked and evaluated against the time and space complexity of the
used algorithm. By this, a selection of suitable algorithm and load balancing can occur at
runtime.

ISSN: 0944-5900, Nummer: CS-01-15 4



Generating Privacy Constraints for Assistive Environments H. Grunert, A. Heuer

Figure 3: The query processor

2.2 Architecture

The basic architecture of our developed privacy-aware query-processor is shown in Figure
3. The processor works in three stages and can be seen as a black box3.

The system can send queries towards the data storage. During the query processing, the
query and the result will be modified under integrity constraints to achieve privacy while
maintaining a certain, predefined degree of veracity. The modified results are masqueraded
as normal results.

2.2.1 Preprocessing

During the preprocessing stage, the preliminary query is analyzed and checked against
the privacy policy of the affected user. The involved personal information queried by the
system is monitored, whether it is uncovered by the user at all (projection) and if it can
be used under user defined constraints. These constraints can be used to decide if the re-
vealed information will be preselected or aggregated. Furthermore, it is also checked if the
processing node has enough capacity (sufficient CPU-power, free main memory). Also, it
is tested if the information system could gain enough information to produce satisfactory
results. To determine how satisfactory the result is, we are using the information loss met-
ric based on the Kullback Leibler divergence [KL51], which has been shown to be a good
approximation to determine how much information remain [HS10].

Finally, the constraints are used for a modification of the query which fulfills all needs.
For modification, we analyze the different parts of the (SQL-)queries. Attributes in the
SELECT clause are removed, if the user does not want to reveal specific information.
If one sensor releases too much information, another sensor is queried by changing the

3The system can submit queries and receives back result sets as usual. The process between is hidden.

ISSN: 0944-5900, Nummer: CS-01-15 5



Generating Privacy Constraints for Assistive Environments H. Grunert, A. Heuer

relation in the FROM clause. In case that not all tuples shall appear in the result, the
WHERE condition is combined with the user’s integrity constraints and the system query
conjunctively.

2.2.2 Intermediate Step

After preprocessing, the modified query is executed on a concrete database system4 con-
taining the personal data. The result of the query is passed to the postprocessor. In ad
hoc networks, each node responsible for the data processing can be replaced quickly. It
is not always ensured that the underlying storage format remains the same. For example,
an old sensor node has its data stored in a pico database management system. During the
evolution of the smart environment, it is replaced by a new sensor which stores its data in
a semi-structured XML file. By changing the file system, the corresponding query must
be replaced in accordance with an equivalent construct in another query language.

A precondition consists of the knowledge about how the information in both formats can
be mapped into each other. For this, techniques from the area of information integration
can be applied. To handle the complexity of this problem, we are using plain old java
objects (POJOs) as a meta model for the mapping of the queries and the results. This meta
model is also used in the middleware [BK12] of the Smart Appliance Lab.

2.2.3 Postprocessing

Taken the preliminary result from the intermediate stage, the postprocessor checks the
required information of the system and the privacy settings of the user. At this time,
the result is modified with privacy-preserving algorithm like k-anonymity [Sam01] or data
slicing [LLZM12], if and only if the processing unit has enough power. Thus, the modified
result is sent back to the system. In case that a unit does not have enough power, the raw
data will be sent to a more powerful node and anonymized later.

3 Policies

In order to collect, to process or to use personal data, the system has to specify (according
to [Bun10]):

1. the purpose and duration of the contract,

2. the extent, nature and purpose of the proposed survey,

3. the processing and use of data,

4. the type of data,

4Our experiments are executed on MySQL, Postgres, DB2 and MonetDB databases

ISSN: 0944-5900, Nummer: CS-01-15 6



Generating Privacy Constraints for Assistive Environments H. Grunert, A. Heuer

5. the range of stakeholders and

6. the origin of the data (provenance)

One aspect of the PArADISE framework intends to support the user of assistive systems
to maintain his privacy. Therefore, the privacy-claims of the user have to be defined in a
policy. In this chapter, we introduce the two main types of privacy constraints and their
representation as a privacy policy for smart environments (PP4SE).

3.1 Sensitive Data

Privacy can be divided into two categories: anonymity and hiding of specific information.

3.1.1 Stay anonymous

For the protection of personal data, there exist concepts such as k-anonymity [Sam01],
l-diversity [MKGV07] and t-closeness [LLV07]. These concepts divide the attributes of
a relation into keys, quasi-identifiers, sensitive data and insensitive data. The aim is that
the sensitive data cannot be clearly assigned to a particular person. Tuples can be uniquely
determined by key attributes, so they should not be published together with sensitive at-
tributes under any circumstances.

PArADISE implements concepts for relational databases to anonymize data as soon as
possible. Similar to antivirus programs, the framework integrates new models as soon as
possible to ensure privacy when new variants of attacks arise. Ubiquitous environments
often use resource-limited devices with low CPU frequency or main memory. To cope this
problem, we try to optimize the privacy-preserving algorithm with regard to such devices.

One example for this is our approach to find quasi-identifiers in high dimensional datasets.
The term quasi-identifier was introduced by Dalenius [Dal86] and describes ”a subset of
attributes which can uniquely identify most tuples in a table”. Quasi-identifiers are used
to define which sets of attributes allow the re-identification of persons or activities, even
if key attributes are removed. They have similar properties as keys: the identification of a
tuple in a relation using these attribute combinations is still possible, but not 100% sure.
QIs can be part of a key, but also combinations of sensitive and insensitive data.

Due to the high dimensionality and the large amount of data generated in an assistive
system, it is not easy for an inexperienced user to recognize which attributes compromise
his privacy. The same applies for the derivation of additional information from the existing
data. In [GH14] we introduced an algorithm which reduced the time to find all quasi-
identifiers by more than 95% (in contrast to the algorithm proposed by [MX07]). By
this, the workload of sensors and other resource-limited devices is not affected too much.
The basic idea of the concept is shown in Algorithm 1. The method alternates between
a bottom-up- and a top-down-approach and shares the knowledge about (negated) quasi-
identifiers (similar to the Sideways Information Passing approach [IT08]). Per calculation
step either the top-down (testing attribute-combination with many attributes) or bottom-up

ISSN: 0944-5900, Nummer: CS-01-15 7



Generating Privacy Constraints for Assistive Environments H. Grunert, A. Heuer

(small combinations) method is executed and the results of the step are passed to the other
method. The algorithm terminates when all attribute levels were executed by one of the
methods or the bottom-up approach has to check no more attribute combinations. More
details are given in our previous paper [GH14].

Algorithm 1: bottomUpTopDown
Data: database table tbl, list of attributes attrList
Result: a set with all minimal quasi-identifier qiSet
attrList.removeConstantAttributes();
Set upperSet := new Set({attrList});
Set lowerSet := new Set(attrList);
// Sets to check for each algorithm
int bottom := 0;
int top := attrList.size();
while (bottom¡=top) or (lowerSet is empty) do

calculateWeights();
if isLowerSetNext then

bottomUp();
buildNewLowerSet();
bottom++;
// Remove new QI from upper set
modifyUpperSet();

else
topDown();
buildNewUpperSet();
top--;
// Remove new negated QI from lower set
modifyLowerSet();

end
end
qiSet := qiLowerSet ∪ qiUpperSet;
return qiSet;

As stated above, the data stored in assistive systems can be divided into four categories:
key attributes, quasi-identifiers, sensitive data and insensitive data. Quasi-identifiers and
key attributes allow the unambiguous identification of an object, such as a person or an
action. These attributes make it possible to combine information from different tables,
databases or with background knowledge. The key property of an attribute is usually
defined within the database design process. In most cases, system-generated artificial
attributes are created for keys, but several existing attributes can be recognized as a key.
Keys should not be passed; they can be linked to information outside from the system and
by this, new information on the affected object can be determined.

Sensitive data is data that needs to be protected. It depends on the application domain and
the affected person to whom the data relate, which data is classified as sensitive. In the

ISSN: 0944-5900, Nummer: CS-01-15 8



Generating Privacy Constraints for Assistive Environments H. Grunert, A. Heuer

Table 1: Device 1 stores the location (x, y, z) about the user (firstname, lastname) at a specific time.
The user does not want to reveal his lastname.

attribute type privacy
lastname string PRIVATE
firstname string PUBLIC

x integer PUBLIC
y integer PUBLIC
z integer PUBLIC

timestamp timestamp PUBLIC

health sector for example, these are information about diseases. In contrast to sensitive
data, insensitive data are those which do not necessarily have to be protected. Again, the
domain and the personal preferences are critical of how the data will be classified.

3.1.2 Protection of secrets

In some assistive systems, it is necessary that the user has to be identified; so the data is
not anonymized. Nevertheless, the user may not want to reveal all information about him
or her. In this case, the user has to define his privacy requirements into a policy.

For an inexperienced user, it is not easy to make meaningful privacy settings. To make
matters worse, in ad-hoc environments, the sensors and processing computer and the al-
gorithms used can be replaced without the user even noticing it. For these reasons, it is
important that the privacy component of the assistive system can generate useful integrity
constraints for the user.

To overcome this problem, we are generating privacy policies for new devices based on
the settings the user has specified for older devices before. We realize this in three steps.
In the first step, schema mappings [MGMR02] between the new device and all known old
devices are generated. The privacy settings of the best fitting devices are adopted for each
mapped attribute. For those attributes on the new device without a compatible attribute,
data mining approaches (clustering, classification) are used to find out which attributes
with similar privacy settings are used together. From these attribute groups we adopt the
settings for the unmapped attributes. In the third step, all attributes without a privacy
mapping are set to PRIVATE, a state where the attribute value cannot be accessed.

The generated privacy settings for the new application/sensor are only of preliminary na-
ture. It is up to the user to accept these settings or to modify them later to meet his desires.
An example for the mapping process is shown in Table 4, where Tables 1-3 represent the
old devices.

ISSN: 0944-5900, Nummer: CS-01-15 9



Generating Privacy Constraints for Assistive Environments H. Grunert, A. Heuer

Table 2: Device 2 stores the location (x, y, z) and the direction of movement about the user (id,
firstname, lastname). The user does not want to reveal his full name.

attribute type privacy
id integer PUBLIC

lastname string PRIVATE
firstname string PRIVATE

x integer PUBLIC
y integer PUBLIC
z integer PUBLIC

direction vector PUBLIC

Table 3: Device 1 stores the location (position) and the direction of movement about the user (id,
firstname) at a specific time. The user does not want to reveal his name.

attribute type privacy
id string PUBLIC

firstname string PRIVATE
position tuple(integer, integer) PUBLIC

timestamp timestamp PUBLIC
direction vector PUBLIC

Table 4: The new device before and after generating privacy settings. After the mapping step, the
first- and lastname are set to private; id, x, y, z and direction to public (based on the most similar
device 2). Timestamp and activity are not mapped. After the data mining step, timestamp is mapped
to public (based on the settings for device 1 and 3). Because activity has no corresponding attribute,
it is set to private (default value).

attribute type before mapping after mapping after data-mining final

id string ??? PUBLIC PUBLIC PUBLIC

firstname string ??? PRIVATE PRIVATE PRIVATE

lastname string ??? PRIVATE PRIVATE PRIVATE

x integer ??? PUBLIC PUBLIC PUBLIC

y integer ??? PUBLIC PUBLIC PUBLIC

z integer ??? PUBLIC PUBLIC PUBLIC

timestamp timestamp ??? ??? PUBLIC PUBLIC

direction vector ??? PUBLIC PUBLIC PUBLIC

activity string ??? ??? ??? PRIVATE

3.2 Privacy policies for smart environments

Our data privacy policy is based on the draft of the W3C for Privacy Preferences Platform
[W3C07], but leaves out browser-specific details, such as the management of cookies. In

ISSN: 0944-5900, Nummer: CS-01-15 10



Generating Privacy Constraints for Assistive Environments H. Grunert, A. Heuer

return, our policy provides additional information for configuring data streams, such as the
allowed query interval and possible aggregation levels.

Hitherto, security models and privacy policies focus on how whole data records can be
protected from unauthorized access. Adding a more fine-granular access control allows
the user to specify which information is revealed and how the data are processed. Data
records can be modified by

• selection,

• projection,

• compression,

• aggregation and

• feature extraction (e.g. on motion images)

to reduce the amount of personal information send towards the tools for evaluation and
analysis.

Our privacy policy is based on the draft of the W3C for Privacy Preferences Platform
[W3C07], but leaves out browser-specific details, such as the management of cookies. In
return, our policy provides additional information for configuring data streams, such as the
allowed query interval and possible aggregation levels.

3.2.1 Internal Representation

In this chapter the policy is explained based on a small example, which is illustrated in
Figure 4. The formal definition is given in the next section.

For internal representation and data exchange, we store the policy as an XML file. A policy
is a set of applications (apps). An application can be a stand-alone computer program, a
background process of an operating system or even a smart environment as a whole. Each
application consists of a unique ID (in the example: MyFridge), which allows unique iden-
tification by its name. In addition, an application has a description and a list of functions
(modules).

A module of an application is a well-defined task to solve a specific problem of the entire
system. For example, a fridge has the basic functionality to check its contents (in the
example: CheckContent) to determine how much food remains. Another module may
implement the automation of buying new food. A module is characterized by its ID and
its type. Each module consists of a description and an indication if the functionality is
required to execute the application.

All modules provide an attribute-list containing all needed attributes. Attribute-lists can
be connected with boolean operators (like and or or) to provide different alternatives if a
user does not want to reveal a specific combination of personal information. An attribute is
identified by its name and persists of different privacy settings. The access conditions for

ISSN: 0944-5900, Nummer: CS-01-15 11



Generating Privacy Constraints for Assistive Environments H. Grunert, A. Heuer

1 <policy>
2 <apps>
3 <application id="MyFridge">
4 <appDescription>
5 This is a smart fridge.
6 </appDescription>
7 <modules>
8 <module id="CheckContent" type="basic"
9 required="yes">

10 <moduleDescription>
11 This module will check which
12 amount of food is remaining.
13 </moduleDescription>
14 <attribute-list>
15 <attribute name="amount">
16 <allow>true</allow>
17 <third-party-access>false</third-party-access>
18 <condition>FAT <= 40</condition>
19 </attribute>
20 </attribute-list>
21 </module>
22 ...
23 <modules>
24 </application>
25 <apps>
26 </policy>

Figure 4: Example for a privacy policy

the application are controlled by the allow- (the application itself) and third-party-access-
tag (to shrink continued processing). The user can specify several conditions under which
the information is disclosed. Additionally, settings regarding aggregation and confiden-
tiality (privacy-level of detail) are specified. In the example, the application has access to
the amount of food remaining for every item in the fridge, except of the food which has
more than 40% of fat.

The separation of functions and applications is important, because this ensures that infor-
mation can only be used for the intended purpose. Thus, the user may share his data for
personalized advertisements. On the other side, the user does not want this information
to be transmitted to his insurance company, so that his contribution rate will be adjusted
according to his eating habits.

3.2.2 Formal definition

Our privacy policy model is a 9-tupel P := (APP, M, ATTR, C, I, A, AGG, ANO, f), where

• APP := a set of applications

• M := a set of modules

• ATTR := a set of attributes

• C := a set of conditions

ISSN: 0944-5900, Nummer: CS-01-15 12



Generating Privacy Constraints for Assistive Environments H. Grunert, A. Heuer

• I := a set of query-intervals

• A := a set of access conditions

• AGG := a set of aggregation functions

• ANO := a set of anonymization functions

• f := a partially defined function, which maps a combination of an application app
∈ APP, a module m ∈ M and an attribute attr ∈ ATTR to a set of conditions C’ ⊆
C, as well as a query interval i ∈ I, several access conditions A’ ⊂ A, an aggregate
function agg ∈ AGG and an anonymization function ano ∈ ANO.
f := (app,m, attr)→ (C ′, i, A′, agg, ano)

The terms application, module, attribute and (access) condition have been introduced
above. The term interval is related to data streams and their continuous collect of in-
formation. By specifying an interval, the user can decide in which frequency his data can
be accessed. Aggregation functions allow the user to hide raw data. Typical functions are
sums, minimum and maximum values and medians as well as complex, statistical con-
structs like correlation coefficients and regression lines. By selecting an anonymization
function f, the user can decide which privacy model is used in the postprocessing stage. If
no method is selected, an appropriate one is selected automatically.

Having selected the function f, the privacy requirements are transformed into Multiple
Access-control Generated Integrity Constraints (MAGIC) for specific query languages and
concrete (database) systems. With MAGIC, the privacy algorithms in the pre- as well as
in the postprocessing stage (see Section 2) are parametrized.

4 Related Work

Due to the Snowden affair [Gre14], a hype around the field of privacy-enhancing technolo-
gies have arisen. In this chapter we present some proven techniques and systems, which
dealt with the protection of privacy before Snowden.

4.1 Frameworks

In his paper [Bün09], Bünnig presents some approaches that implement the trusted ex-
change of whole documents between two parties. The sharing model uses machine learn-
ing techniques for automatic, context-based classification (release: yes or no) to carry out
and transfer the old settings to new documents.

The PArADISE approach uses similar concepts, but is based on a more detailed release
model and is not restricted to a document as a whole. Furthermore, PArADISE also an-
alyzes and, if necessary, modifies the content of data sets before passing them to other
processing units.

ISSN: 0944-5900, Nummer: CS-01-15 13



Generating Privacy Constraints for Assistive Environments H. Grunert, A. Heuer

In addition to [Bün09], there is a vast amount of other research prototypes, like the frame-
work developed at the University of Potsdam by Scheffler [Sch13] or the specialized
privacy-aware XML framework developed by [lRA14]. Most approaches have in com-
mon that they are restricted to specific data formats such as relational structures, XML or
JSON and do not consider the heterogeneity of data sources. In addition, they are limited
to simple locking mechanisms, which do not provide advanced anonymity concepts.

4.2 Policies

Usually, simple access control lists (ACL) are often used for the formulation and enforce-
ment of privacy rights. ACLs define the access rights only for files, but not for content.
Besides pure rights management, privacy policies can be used as an advanced concept that
allows a more detailed definition of privacy claims.

The World Wide Web Consortium (W3C) is proposing two standards for the formulation
of privacy policies. On the one hand, there is the Platform for Privacy Preferences Project
[W3C07], a markup language that is intended for use in browsers. The user can generally
define what kind of websites can be accessed. The website provider can formulate what
data he stores, e.g. by means of cookies, about the user. If these requirements contain
contradictions, the user is warned.

In addition to the P3P, the W3C has suggested the Enterprise Privacy Authorization Lan-
guage [W3C03], another language that is specifically designed for the exchange of data in
business environments. Both language proposals are based on the XML format and pro-
vide a rule-based access mechanism in which roles and conditions are formulated to grant
or deny write and read access rights.

Besides the above mentioned W3C standards, there exist many other language proposals,
such as the eXtensible Access Control Markup Language [OAS13]. These do not differ
substantially from the existing language proposals.

4.3 Bell-LaPadula security model

Security models are designed to prevent unauthorized data modification and access and to
maintain consistency. One of the most frequently used models is introduced by Bell and
LaPadula in [BL73]. The model provides three rules to achieve trust and privacy:

• simple security property: a subject with a lower security level than an object must
not read the object

• star-property: a subject with a higher security level than an object must not write the
object

• discretionary security property: an access control matrix is used to specify the rela-
tion between objects and subjects

ISSN: 0944-5900, Nummer: CS-01-15 14



Generating Privacy Constraints for Assistive Environments H. Grunert, A. Heuer

Aside this model, there exist several other models like the model by Biba [Bib77] or the
Chinese Wall Model [BN89] which offer similar approaches to provide access control
mechanism.

5 Conclusions

The protection of privacy in ubiquitous environments is a challenging task. A variety of
sensors capture every moment of our life. In this paper, we present a method to formulate
privacy claims on an assistive system, so that we become the master of our own personal
data. By reducing and preprocessing the data generated by the sensors and processed by
the system, privacy can be ensured in smart environments.

We also presented a privacy-aware query processor. Powered by the data protection pro-
files of the users, the acquisitiveness of assistive systems is limited. Our privacy-aware
query processor gives a comprehensive tool to ensure privacy by analyzing queries and
optionally rewrites them.

At the present time, we integrate existing data protection techniques and analysis functions
(in the context of student projects) into the query processor. It is recommended that further
research should be undertaken in the following areas:

• Automatic comparison between the privacy requirements of the user and the re-
quired information of the system.

• Anti-virus programs offer protection against the newest malicious software. Can
this procedure be adapted to data mining technologies and privacy protection mech-
anism?

Further studies, which take the comparison of the privacy constraints and the analysis
functions into account, will need to be performed. We are in the process of investigating
the transformation process of complex analysis functions into SQL-queries.

6 Acknowledgements

Hannes Grunert is funded by the German Research Foundation (DFG), Graduate School
1424 (Multimodal Smart Appliance Ensembles for Mobile Applications - MuSAMA).

References

[Bib77] Kenneth J Biba. Integrity considerations for secure computer systems. Bericht, DTIC
Document, 1977.

ISSN: 0944-5900, Nummer: CS-01-15 15



Generating Privacy Constraints for Assistive Environments H. Grunert, A. Heuer

[BK12] Sebastian Bader und Thomas Kirste. An overview of the helferlein-system. Institut für
Informatik, Universität Rostock, Rostock, Germany, Tech. Rep. CS-03-12, 2012.

[BL73] D Elliott Bell und Leonard J LaPadula. Secure computer systems: Mathematical foun-
dations. Bericht, DTIC Document, 1973.

[BN89] David F.C. Brewer und Dr. Michael J. Nash. The Chinese Wall Security Policy, 1989.

[Bün09] Christian Bünnig. Smart privacy management in ubiquitous computing environments.
In Human Interface and the Management of Information. Information and Interaction,
Seiten 131–139. Springer, 2009.

[Bun10] Bundesrepublik Deutschland. Bundesdatenschutzgesetz in der Fassung der Bekannt-
machung vom 14. Januar 2003 (BGBl. I S. 66), das zuletzt durch Artikel 1 des Gesetzes
vom 14. August 2009 (BGBl. I S. 2814) geändert worden ist, 2010. in german.

[Dal86] Tore Dalenius. Finding a Needle In a Haystack or Identifying Anonymous Census
Records. Journal of Official Statistics, 2(3):329–336, 1986.

[GH14] Hannes Grunert und Andreas Heuer. Big Data und der Fluch der Dimensionalität: Die
effiziente Suche nach Quasi-Identifikatoren in hochdimensionalen Daten. In Proceed-
ings of the 26th GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken). http://ceur-ws.org, 2014. in german.

[Gre14] Glenn Greenwald. No Place to Hide: Edward Snowden, the NSA, and the US Surveil-
lance State. Metropolitan Books, 2014.

[Gru14a] Hannes Grunert. Distributed Denial of Privacy. In INFORMATIK 2014: Big Data
Komplexität meistern, Seiten 2299–2304. Springer, 2014.

[Gru14b] Hannes Grunert. Privacy-aware Adaptive Query Processing in Dynamic Networks. In
Proceedings of the 8th Joint Workshop of the German Research Training Groups in
Computer Science. Anja Jentzsch, Tobias Pape and Sebastian Pasewaldt (Edt.), 2014.

[HS10] Ayça Azgin Hintoglu und Yücel Saygın. Suppressing microdata to prevent classifica-
tion based inference. The VLDB Journal, 19(3):385–410, 2010.

[IT08] Zachary G Ives und Nicholas E Taylor. Sideways information passing for push-style
query processing. In Data Engineering, 2008. ICDE 2008. IEEE 24th International
Conference on, Seiten 774–783. IEEE, 2008.

[KL51] Solomon Kullback und Richard A Leibler. On information and sufficiency. The Annals
of Mathematical Statistics, Seiten 79–86, 1951.

[LLV07] Ninghui Li, Tiancheng Li und Suresh Venkatasubramanian. t-closeness: Privacy be-
yond k-anonymity and l-diversity. In IEEE 23rd International Conference on Data
Engineering, Seiten 106–115. IEEE, 2007.

[LLZM12] Tiancheng Li Li, Ninghui Li, Jian Zhang und Ian Molloy. Slicing: A New Approach
for Privacy Preserving Data Publishing. Proc. ACM SIGMOD Int’l Conf. Management
of Data (SIGMOD), 24(3):561–574, March 2012.

[lRA14] Alberto De la Rosa Algarı́n. An XML Security Framework that Integrates NIST
RBAC, MAC and DAC Policies, 2014.

[MGMR02] Sergey Melnik, Hector Garcia-Molina und Erhard Rahm. Similarity flooding: A ver-
satile graph matching algorithm and its application to schema matching. In Data Engi-
neering, 2002. Proceedings. 18th International Conference on, Seiten 117–128. IEEE,
2002.

ISSN: 0944-5900, Nummer: CS-01-15 16



Generating Privacy Constraints for Assistive Environments H. Grunert, A. Heuer

[MKGV07] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke und Muthuramakrishnan
Venkitasubramaniam. l-diversity: Privacy beyond k-anonymity. ACM Transactions
on Knowledge Discovery from Data (TKDD), 1(1):3, 2007.

[MX07] Rajeev Motwani und Ying Xu. Efficient algorithms for masking and finding quasi-
identifiers. In Proceedings of the Conference on Very Large Data Bases (VLDB), Seiten
83–93, 2007.

[OAS13] OASIS. eXtensible Access Control Markup Language (XACML) Version
3.0. https://www.oasis-open.org/committees/tc_home.php?wg_
abbrev=xacml, 2013.

[Sam01] Pierangela Samarati. Protecting respondents identities in microdata release. Knowl-
edge and Data Engineering, IEEE Transactions on, 13(6):1010–1027, 2001.

[Sch13] Thomas Scheffler. Privacy enforcement with data owner-defined policies. Dissertation,
Universität Potsdam, 2013.

[W3C03] W3C. Enterprise Privacy Authorization Language. http://www.w3.org/
Submission/2003/SUBM-EPAL-20031110/, 2003.

[W3C07] W3C. Platform for Privacy Preferences (P3P) Project. http://www.w3.org/
P3P/, 2007.

[Wei91] Mark Weiser. The computer for the 21st century. Scientific american, 265(3):94–104,
1991.

A PP4SE

1 <?xml version="1.0" encoding="UTF-8"?>
2 <xs:schema
3 xmlns:xs="http://www.w3.org/2001/XMLSchema"
4 elementFormDefault="qualified"
5 attributeFormDefault="qualified">

Figure 5: The Privacy Policy for Smart Environments (PP4SE) is based on XML Schema.

ISSN: 0944-5900, Nummer: CS-01-15 17



Generating Privacy Constraints for Assistive Environments H. Grunert, A. Heuer

1 <xs:element name="policy">
2 <xs:complexType>
3 <xs:sequence>
4 <xs:element ref="apps" minOccurs="0" maxOccurs="1"/>
5 </xs:sequence>
6 </xs:complexType>
7 </xs:element>
8
9 <xs:element name="apps">

10 <xs:complexType>
11 <xs:sequence>
12 <xs:element ref="application" minOccurs="0"
13 maxOccurs="unbounded"/>
14 </xs:sequence>
15 </xs:complexType>
16 </xs:element>

Figure 6: Every Privacy Policy consists of a list (apps) of application.

1 <xs:element name="application">
2 <xs:complexType>
3 <xs:sequence>
4 <xs:element ref="app_description" minOccurs="0"
5 maxOccurs="1"/>
6 <xs:element ref="modules" minOccurs="0" maxOccurs="1"/>
7 </xs:sequence>
8 <xs:attribute ref="app_ID" use="required"/>
9 </xs:complexType>

10 </xs:element>
11
12 <xs:attribute name="app_ID" type="xs:string"/>
13 <xs:element name="app_description" type="xs:string" />
14
15 <xs:element name="modules">
16 <xs:complexType>
17 <xs:sequence>
18 <xs:element ref="module" minOccurs="0"
19 maxOccurs="unbounded"/>
20 </xs:sequence>
21 </xs:complexType>
22 </xs:element>

Figure 7: An application has a description (app description), a unique ID (app ID) and a list (mod-
ules) of its provided functionalities (module).

ISSN: 0944-5900, Nummer: CS-01-15 18



Generating Privacy Constraints for Assistive Environments H. Grunert, A. Heuer

1 <xs:element name="module">
2 <xs:complexType>
3 <xs:sequence>
4 <xs:element ref="module_description" minOccurs="0"
5 maxOccurs="1"/>
6 <xs:element ref="attributeList" minOccurs="0"
7 maxOccurs="1"/>
8 </xs:sequence>
9 <xs:attribute ref="module_ID" use="required"/>

10 <xs:attribute ref="module_type" use="required"/>
11 <xs:attribute ref="module_required" use="optional"/>
12 </xs:complexType>
13 </xs:element>
14
15 <xs:attribute name="module_ID" type="xs:string"/>
16 <xs:attribute name="module_type" type="xs:string"/>
17 <xs:attribute name="module_required" type="xs:boolean"/>
18 <xs:element name="module_description" type="xs:string" />
19
20 <xs:element name="attributeList">
21 <xs:complexType>
22 <xs:sequence>
23 <xs:element ref="attribute" minOccurs="0"
24 maxOccurs="unbounded"/>
25 </xs:sequence>
26 </xs:complexType>
27 </xs:element>

Figure 8: A module consists of its description (module description), a unique ID (module ID), the
type of the module (module type) and the declaration if this module is required for executing the
application (module required). Every module provides a list (attributeList) with its appropriate at-
tributes.

ISSN: 0944-5900, Nummer: CS-01-15 19



Generating Privacy Constraints for Assistive Environments H. Grunert, A. Heuer

1 <xs:element name="attribute">
2 <xs:complexType>
3 <xs:choice>
4 <xs:sequence>
5 <xs:element ref="allow" minOccurs="0"
6 maxOccurs="1"/>
7 <xs:element ref="third_party_access" minOccurs="0"
8 maxOccurs="1"/>
9 <xs:element ref="condition" minOccurs="0"

10 maxOccurs="1"/>
11 <xs:element ref="aggregation" minOccurs="0"
12 maxOccurs="1"/>
13 <xs:element ref="interval" minOccurs="0"
14 maxOccurs="1"/>
15 </xs:sequence>
16 <xs:element ref="privacyLevel" minOccurs="0"
17 maxOccurs="1"/>
18 </xs:choice>
19 <xs:attribute ref="name" use="required"/>
20 </xs:complexType>
21 </xs:element>
22
23 <xs:attribute name="name" type="xs:string"/>
24 <xs:element name="allow" type="xs:boolean"/>
25 <xs:element name="third_party_access" type="xs:boolean"/>
26 <xs:element name="interval" type="xs:string" />

Figure 9: An attribute is identified by its name. Furthermore, it is declared if the attribute can be
accessed directly (allow) or indirect by third-party-applications (third party access). Furthermore,
general conditions, level of aggregation and the query interval can be defined for the attribute. If
the user don’t want to give detailed privacy settings, he can specify a level of anonymization priva-
cyLevel instead.

1 <xs:element name="privacyLevel">
2 <xs:simpleType>
3 <xs:restriction base="xs:string">
4 <xs:enumeration value="public"/>
5 <xs:enumeration value="confidential"/>
6 <xs:enumeration value="secret"/>
7 <xs:enumeration value="top-secret"/>
8 </xs:restriction>
9 </xs:simpleType>

10 </xs:element>

Figure 10: A simplified privacyLevel consists of a domain-specific enumeration of chosen values.
Typical levels for such values are, for example public, confidential, secret and top secret.

ISSN: 0944-5900, Nummer: CS-01-15 20



Generating Privacy Constraints for Assistive Environments H. Grunert, A. Heuer

1 <xs:element name="condition">
2 <xs:complexType>
3 <xs:choice>
4 <xs:element ref="atomicCondition" minOccurs="1"
5 maxOccurs="1"/>
6 <xs:element ref="andCondition" minOccurs="1"
7 maxOccurs="1"/>
8 <xs:element ref="orCondition" minOccurs="1"
9 maxOccurs="1"/>

10 </xs:choice>
11 </xs:complexType>
12 </xs:element>

Figure 11: A release condition can be divided into atomicConditions and composed conditions.

1 <xs:element name="atomicCondition" type="xs:string" />
2
3 <xs:element name="andCondition">
4 <xs:complexType>
5 <xs:choice minOccurs="2" maxOccurs="unbounded">
6 <xs:element ref="atomicCondition" minOccurs="1"
7 maxOccurs="unbounded"/>
8 <xs:element ref="orCondition" minOccurs="1"
9 maxOccurs="unbounded"/>

10 </xs:choice>
11 </xs:complexType>
12 </xs:element>
13
14 <xs:element name="orCondition">
15 <xs:complexType>
16 <xs:choice minOccurs="2" maxOccurs="unbounded">
17 <xs:element ref="atomicCondition" minOccurs="1"
18 maxOccurs="unbounded"/>
19 <xs:element ref="andCondition" minOccurs="1"
20 maxOccurs="unbounded"/>
21 </xs:choice>
22 </xs:complexType>
23 </xs:element>

Figure 12: An atomic condtion can’t be divided. To formulate such a condition, a SQL-WHERE-
clause or an OCL-constraint can be used, depending on the domain. An andCondition consists at
least of two atomic or orConditions. The same applies for the orCondition. For internal use of the
conditions the clauses are transformed int a disjunctive normal form for better evaluation.

ISSN: 0944-5900, Nummer: CS-01-15 21



Generating Privacy Constraints for Assistive Environments H. Grunert, A. Heuer

1 <xs:element name="aggregation">
2 <xs:complexType>
3 <xs:sequence minOccurs="1" maxOccurs="1">
4 <xs:element ref="aggregationType" minOccurs="1"
5 maxOccurs="1"/>
6 <xs:element ref="groupBy" minOccurs="1" maxOccurs="1"/>
7 </xs:sequence>
8 </xs:complexType>
9 </xs:element>

10
11 <xs:element name="groupBy" type="xs:string" />
12
13 <xs:element name="aggregationType">
14 <xs:simpleType>
15 <xs:restriction base="xs:string">
16 <xs:enumeration value="min"/>
17 <xs:enumeration value="max"/>
18 <xs:enumeration value="sum"/>
19 <xs:enumeration value="count"/>
20 <xs:enumeration value="avg"/>
21 </xs:restriction>
22 </xs:simpleType>
23 </xs:element>
24
25 </xs:schema>

Figure 13: To define an agggregation-constraint an aggregation function (aggregationType) and a
groupping function (groupBy) are given.

ISSN: 0944-5900, Nummer: CS-01-15 22



Impressum

Universität Rostock
Institut für Informatik
Lehrstuhl für Datenbank- und Informationssysteme
Albert-Einstein-Straße 22
18059 Rostock

Vertreten durch: Prof. Dr. rer. nat. habil. Andreas Heuer


