Twe 3. Langer

Join optimization in distributed database systems
based on a complete search space

PREPRINTS
CS5-04-95

Herausoreer: Fachbereich Informatik der Universititt Rostock

LERTORAT: Autorenkorrcktur

Die Proprint-Reihe des FB Informatik dient der Vorverdfentlichung der aktuelion fachlichen Ergebnisse der

jeweiligen Autoren, Die fachliche Vorantwortung fitr den Inhalt des Heftes licgt ausschlicBlich beim Autor.

ZITAT KURZEITEL:

Uwe 1. Langer:

Join optimization in distributed database systems

based on a complete search spses - Rostock : Universitat Rostock, 1995. -
(Preptints aus dem Fachbereich Informatik; 17)

ISSN 0944-5900

© Universitat Rostock, Presse- und Informationsstelle, Wissenschaftspublizistik, 18051 Rostock

BRzucsMOOLICHKETEN: Universitit Rostock, Presse- und Informationsstelle, Wisscnschaftspublizistik
18051 Rostock, B (0381) 4 98 10 36; FAX (0381)4 98 1070

Universitit Rostock, Fachbersich Informatik, 18051 Rostock

Druck: Drucktechnische Zentralstelle der Universitat Rostock 925/95

Join optimization in distributed database systems based on a
complete search space

Uwe J. Langer *

University of Rostock
- Computer Science Department
Database Research Group
18051 Rostock
Germany
ul@informatik.uni-rostock.de
http://wwwdb.informatik.uni-rostock.de/ ul/

ABSTRACT

In the context of the project HEAD™ {(Heterogeneous Extensible and Dis-
tributed DBMS) we present a technology to distribute join queries over dis-
tributed relational DBMSs in a heterogeneous workstation network, Special
aspects are the optimization of multi-way joins and the optimal paraliel execu-
tion based on data flow control involving CPU, /O, memory allocation and
network load.

We focus our attention on spanning a complete search space without invalid
elemenits to optimize multi-way joins with help of an approximative search
algorithm and a complex cost function.

1. Introduction

Join operations have a great importance for the performance of algebraic query exccution due
to their high costs. Therefore the optimization of complex join expressions is an important
part of the optimization in relational database systems,

‘There are many approaches to optimize complex join trees. Besides conventional optimiza-
tion strategies exploited for local DBMS there are approaches for multiprocessors,
homogeneous and heterogeneous distributed DBMS based on a shared memory, shared disk
or shared nothing architecture.

The base of the most published articles are optimization approaches from [SAC+79] and
[KrBZ86] (KBZ-algorithm).

* The research was supported by the DFG (German Research Association} under contract: Me 1346/1-2

Join optimization

Most relational database query optimizers concentrate on linear query evolution plans
[SwGu88, BIL4+89, DGS+90]. This holds in the context of sequential execution or pipeline
parallelism only.

Since multi-processor machines and workstation nets with powerful communication media
has been available, horizontal parallelism supported by bushy trees became attractive, too
[DeKT90, LuST91]. Extreme tree shapes like linear and balanced bushy trees play an
important role if we have homogeneous processor nodes [HoSt931.

The cost evaluation was often limited to special resources like the communication media. If
communication costs are dominating we have to focus our attention on avoiding Cartesian
products and minimizing the size of intermediate relations. Examples are shown for instance
in [LaVZ93, YCWT93, Swam89]. Heuristic strategies like greedy algorithms and the
algorithm for Complete and Feasible sets of cuts reduce the computing complexity and the
transmission costs depending on relation size and selectivity. ([Ch¥u94, LuST91]

In [ScDe90] the application of right deep trees is analyzed in the case of main storage
deficiency in a shared nothing multiprocessor environment. A similar approach is shown in
[ZiZB93], besides linear trees and bushy trees so called zig zag trees are introduced. These
zig zag trees permit a better adaptation of query execution to the available memory.

In [DuKS892] proposals made by [SAC+79) and [KrBZ86] are applied to a heterogeneous
envircnment. As a result linear and special bushy trees are generated,

Extreme tree shapes are bushy, left deep and right deep tree. The others reflect several transi-

tion states (Figure 1).
IO
o L AEBAR e

@ @ a0 andaz ay

Figure 1: Possible shapes for a join tree with four vertices

Without join dependencies all combinations of join arrangement have to be considered. In
figure 1 there are 14 # 4! =336 arrangements. This variety can be limited by join depen-
dencies.

In a heterogeneous workstation environment like HEAD where load from other non database
applications is considered, it is ingeniously to permit fransition shapes between linear and
balanced bushy trees to get a finer granularity for a better utilization of main storage, load,
hardware power and the parallelism of available computer nodes to achieve a maximal
throughput.

Including such transition shapes into the search space was done in [Kang?1, GaHK92].

A very hard problem is the spanning of the complete search space. The step by step optimiza-
tion of query plans as in [Fong86)}, heuristic transformations as in [LVZC93] or rule based
transformations of the query plan {PiH{H92] deliver not necessarily the optimal plan.

l
i

Join optimization

The presentation of a complete search space by usual strategies partially results in tree shapes
including Cartesian products as in [GrMc93, LePP91].

In the past treeshapes were subdivided into lincar, bushy and the so called zig zag trees and
very often the relationship between iree shapes and hardware resources was examined. It is
based on the fact, that until now the optimization approaches of multi-way joins do not solve
the problem of spanning a complete search space without Cartesian products.

In this article we present an approach for mapping the search space without Cartestan pro-
ducts. In general the solution space Lis a subset from the search space S, t.e, L8, but in the
following approach the search space and the solution space are identically, i.e. £=5.

1.1, Muliti-way joins

In the project HEAD only binary and unary operations are considered. Therefore multi-way
joins are transformed to sequences of binary joins. The results are join trees, i.e. _I%R,» is
substituted by an expression like this: -

((C.(R; D3 Ry} M Ry)..) M R)
A join free does not contain any other algebraic operation then joins.

Equivalence rules are used to isolate join trees from the given query tree to get join trees
without any other algebraic operations. The leaves of a join tree could be complex sub-trees
as the root node of the join tree can be a sub-tree of a complex expression too. They are
abstracted to simple relations here.

Semi-join programs as used in [ChLi85} are not considered in this article, since transmission
costs are not the dominating factor in our envirenment and so we don’t benefit from including
extra operations into the query plan,

2, Absfract tree shapes

2.1. Input data stream arrangement

The arrangement of input operations concerning join operations is significantly. In hash join
cascades it influences the arrangement of hash tables. Without loss of generatity the hash join
is considered as an example for the other join implementations in the following.

In this article the right sub-relation is considered as the inner relation of a join operation used
for the hash table (build phase) and the left sub-relation as the outer relation is used for
comparison with the hash table (probe phase) in opposition to [ZiZQ93, AdBh93].

The arrangement of input data streams influences the query execution, the memory need and
the system throughput in general. The input data streams can be produced by simple relations
and complex sub-trees. The data-flow can be controlled by the input stream arrangement.

The arrangement depends on three criteria, These criteria are partly contrary (Figure 2). We
assume that paging between intern and extern memory decreases the system throughput
hardly. Therefore an optimization criterion is to prevent paging.

More details about input data stream arrangement are described in [FILM95]..

Join optimization

prevention of
paging by
forced data flow
rearrangement

continuous smallor = inner
and relation
steady || for limitation of
data flow memory need

Figure 2: Contrary criteria for efficient joins

2.2. Selected tree shapes

In the following selected tree shapes are examined to show the relationship between concrete
tree shapes and resource allocation. The hash join is used as a representative again.

Join dependencies are not considered in the following, i.e. it is assumed, that transformations
do not implicate Cartesian products on the basis of join dependencies. Concrete values like
size of relations, hash tables and so on are not taken into account,

Parameters are:
* The count of hash tables used at the same time,

* Needed Phases to execute sub-trees. A phase is the duration to load one or more hash
tables into the main memory or to execute a steady and continuous data-flow. This appro-
ach is in contrast to [ZiZB93], where only executed data flows are called phases. In the
following the time to load a hash table is called one phase, too.

* All necessary begin and end cycles to execute a query iree. These cycles represent the
duration of some algebraic operations waiting for data in a cascade of join operations or
the termination of the last operation caused by the data flow control. End cycles have a
low importance since bound resources can be released after the last data block was pro-
cessed. Begin cycles are of a larger importance because the initialization of operations
have to be completed before the first block of data arrives at any operation,

* The transmission of a complete data stream between two operations is called communica-
tion unit (CU). In the following example the locations of R, - Ry are assumed to be on
the node performing the join operation. The results are local communications with very
low transmission costs. On the other side there are no interactions between local com-
munication and global resources. Moreover the network communication is assumed to be
a communication in a network without subnets,

22,1, Left deep and bushy trees

In the first part the left deep tree (LDT), bushy trees (BT} and the balanced bushy tree (BEBT)
are considered only (Table 1 and 2). In the column “Hash tables" the first iter represents the
maximal count of long living and coexisting hash tables, the second one represents temporal
existing hash tables with smaller importance.

———a

e e s e

Join optimization

0 1 2
Ry
7 Ry
6 R’] Rs
Rs s R,
Ry 3
Ry Ks
RiR, RiB,R:R, RIRRiR,
3 4 5
Rs
R R’T 8 R'_r Rg
7 586 6
R;R2R3R¢R5R6 RiRyRa Ry RiR, 523R4
6
RMs

Table 1: Examples for left deep and bushy trees

2.2.2, Evaluation of Ieft deep and selected bushy trees

Linear trees (example index#0) prefered in [SAC+79, SwGu88] are executable in only two
phases. But in comparison to bushy trees the concurrent resource allocation is very high. In
the example in table 1 there are seven coexisting long living hash tables. On the other hand
there is the maximal count of ‘begin and end cycles. A further disadvantage is the concurrent
transmission of many data blocks across the whole network,

In the case of large relations the usage of this tree shape is restricted due to memory allocation
and communication load, On the other side it is uscfully for on multiprocessor machines with
a large shared memory and fast local communication mechanisms,

In distributed systems with a shared nothing architecture the left deep tree shape (index#0) is
only applicable for small relations.

Join optimization

| Typ | Hashtables | Phases | Begincycles/ | CU
end cycles
o[LDT 7 2 747 6
1§ BT 6+1 3 6+6 5
2 | BT 5+2 3 5+5 4
3| BT 5+2 3 4+4 3
4 | BT 443 3 4+4 3
5| BT 6+1 3 4+4 3
6 | BBT 442 4 3+3 2

The other extreme case is the balanced bushy tree (indexi#6) with a smatler resource need at
once. It has fewer begin and end cycles but more phases to execute a guery plan. All other

Table 2: Evaluation of linear and bushy trecs

tree representatives are steps between these two extreme forms,

Notice the bushy tree with index#4. It is a favorable compromise on the advantages and
disadvantages of extreme tree shapes. Without loss on efficiency its regular structure is linear

extensible through further join operations.

2.2.3. Right deep and zig zag trees

In the following zig zag trees ZZT and the right deep tree RDT are investigated with the equal
count of joins and relations as in the example above (see Table 3 and 4).

| Typ | Hashtables | Phases | Begincycles/ | CU
end cycles
7 | RDT 1+1] i+l 1
g | ZZT 2+1 7 2+1 2
9 | ZZT 341 6 3+1 3
10 | ZZT 4+1 5 4+1 4
1 | ZZT 5+1 4 5+1 5
12 | ZZT 641 3 6+1 6

Table 4: Evaluation of right and zig zag trees

2.2.4. Evaluation of right deep and zig zag trees

The evaluation of zig zag trees shows that the resource demand of these trees can be
influenced and controlled in an easy way. An interesting fact is the inverse proportional rela-
tion ship between execution speed and resource need, mainly main storage and communica-
tion media. Therefore it is possible to find an ideal mapping between the just available
resources and a zig zag tree.

= B

Join optimization

7 8 9
R R R
'%,’\% ‘%,3 '%fe
& & 4
R4 R4 % RR4
Rk, Bk, Kok,
10 11 12

Ry R
Ry lsﬁ
R, 6
Rs Rs
Ra Ry
R R
RERQ_ lRZ

Table 3: Right deep and zig zag trees

2.2.5. Comparison between bushy and zig zag trees

Bushy trt?es permtit in contrast to zig zag trees a limited mapping between available resources
and possible tree shapes, They are very restrictively in case of resource deficiency. Zig zag
trees allow a controlled resource allocation til] a minimum of resources.

A clorfrparison _of efficiency between nearly adequate representatives (join tree with index#4
vs. join tree with index#12 or join tree with index#6 vs. join tree with index#1 1) shows the

higher speed of bushy trees based on the same memory need but less phases. The load of the
communication media is smaller, too,

The following conclusions are derivable:
* Bushy trees are to prefer to handle smaller or medium resource load in the global system.

* A heavy load in a global system forces zig zag trees due fo their easier adaptability and
the better support in a case of the heavy loaded system.

* A minimum of available resources forces right deep trees.

* Oniy the existence of voluminous free resources justify the usage of left deep structures.

3. A complete search space

A join tree can be transformed in such a way that the result is a correct join tree. The tree
§hapt? is changed but the resulting relation produced from the input relations has to be
identically to the output relation based on the original tree shape.

Join optimization

There are two questions:
+ Ts it usefully to consider all possible alternative join trees?

« How can selected join trees be mapped in an efficient way?

Especially complex queries justify the consideration (or the ability of consideration)} of all
alternative join trees because the answering times may differ exfremely.

3.1. Equivalent sets

To every join tree there is a finite number of equivalent join trees. All of them can be ge-
nerated by a finite number of steps based on equivalence rules. These trees differ in their
costs. We are only interested in trees with the smallest costs. These can ever be found
through exhaustive search.

Let £2 be a set of join trees derivable from a given join tree f; and there is a subset T without
any Cartesian products. We are only interested in the subset T < Q oxcluding Cartesian
product from the set of all graphs Q with 10 = k! including the combinatorial variety derived
from the original join tree #,. k is the count of binary join operations of the join tree.

To optimize join trees with any approximative search algorithm the complete search space has
to be spanned. A problem is the mapping with respect to the equivalence set of join trees and
a kind of representation suitable for approximative search algorithms.

3.2. Adaptation to approximative search algorithms
Approximative search algorithms need the size of the search space as well as the lower and
upper bound of a range as input parameters, It generates solutions evaluated with the help of a
cost function, Dependent on the search strategy the approximative algorithm systematicalty
approximates to the global optimum without searching exhaustively.
Solution proposals of any approximative algorithm are only numeric values. That means, the
optimization of complex structures needs a mapping to a more abstract representation,
To be open to any serial and paralle] algorithm an integer approach follows mapping join trees
to a set of representatives. Therefore the term set of representatives is defined here.
Definition 1:
A set of representatives Y = {#;} with #,eN is a bijective mapping between the set of
equivalent join trees and a closed interval [0,..,n—1] of natural numbers (internal
representation).
This set of representatives is used by the approximative algorithm as the search space. It is
assumed, that the count of representatives is correctly calculable.
In the best case the search space can be an integer space only. There should be only a few
abrupt changes in the space of values caused by small steps in the definition space, Otherwise
the advantage of an approximative algorithm to find the global optimum with statistical
warranty in a finite number of steps is lost [[nRo89]. As an effect the final value could be the
best of all considered values, but it can extremely differ from a local or the global optimum.

For an efficient use of an approximative algorithm assumptions are needed, which are
enumerated in the following,.

=g

Join optimization

Like [PaKe86] special criteria have to be fulfilled,

3.3. Criteria for an efficient internal representation of a query graph

The internal representation of the guery graph has to fulfill the following criteria to get the
warranty of applicability and the necessary efficiency.

o« V@ eTy 3 (e V) withT={t;} and Y = {u;}, i.e. all query graphs can be figured.
» Al query graphs have to be represented in a unique and fair kind to guarantee a unigue
management,

* The solution space should.be convex. Only trees and nothing else has to be generated to
get the warranty that every new derived graph lies in the search space.

+ The predecessor and the successer have to be produced with a low expense.
s pred(t)y=1t_;) < pred(w)=u;_; and succ(t;) =ty < succ(y;) =uy,, ie. small
changes in the query graph have to implicate only small changes in the internal

representation and small changes in the internal representation have to implicate small
changes in the query graph, too.

+ |TI=17I, i.e. the cardinality of the set of all equivalent query graphs has to be equal to the
cardinality of the set of representatives.

3.4. Transformation of join trees

To optimize acyclic graphs these prerequisites are easily to fulfill. Therefore in the first step
we assume sub-queries with acyclic join dependencies. '

3.4.1. Creation of equivalent join trees based on acyclic join dependencies

Let 13 be a given join tree extracted from a complete query tree. Equivalent join trees are ge-
nerated based on algebraic equivalence rules,

Let T be a set of equivalent trees to fp with T= {t;}, i =0..n— 1, nelN, where n =ITi is the
count of all equivalent trees.

A join graph (Figure 3(b)) can be derived from a given join tree (Figure 3(a}).

dg)

Figure 3: Join tree and join graph of acyclic join queries

To use any approximative search algorithm for join optimization it is necessary to have the
possibility to map the variety of sequences and arrangements to the search space.

Join optimization

It is assumed that there are no multiple edges. Multiple join dependencies between relations
or sub-relations are concatenated to one join dependency.

To determine all the possible equivalent sub-trees the following special graph reduction appro-
ach is chosen:

Select any edge from the join graph, fuse the two disjunct vertices together and change the
label, ie. R;M Ry — Ry Repeat this until one vertice is left only. Multiple edges are
concatenated to a simple one. The index of the remaining vertice describes a correct join tree.
In this case valid join trees without Cartesian products are generated,

The search space of an acyclic join graph is equal to the product of all alternatives to select an
edge in every step. It means » relations span a search space of (n — 13! equivalent join trees.

The commutativity of joins has no effect to the spanning of the solution space. The order of
the sub-relations as input streams is not considered here.

3.4.2. Creation of equivalent join trees based on cyclic join dependencies

To span the search space for cyclic join graphs satisfying the demands of the space of
representatives is much more difficult than to span the search space for acyclic join graphs.

With the assumption of fuseing multipie edges and the concatenation of the join dependencies
there is the possibility of a discontinuous decreasing of the edge count. Therefore the count
of the equivalent join trees is difficult to determine.

The mapping from the set of » equivalent join trees to the closed interval of (n —1)! integer
representatives in the same way as the mapping of acyclic join graphs involves many invalid
representatives. A part of the evaluation of the representatives has to be the validity examina-
tion to avoid Cartesian products. Invalid representatives can not be mapped to the solution
space. The solution space would become concave.

Therefore in the following an approach is shown to achieve a correct mapping between join
trees based on cyclic join graphs and the space of representatives satisfying the prerequisites,

The mapping from the set of equivalent join trees T to the set of representatives Y and vice
versa can not be handled in a unique way because of the structure complexity and the dif-
ferences in structures. On the other hand only the mapping from T - T and equal
cardinalities of the sets YT and T are necessary for join optimization. For simplification the
demand of a bijective mapping between the set of representatives and the set of equivalent
join trees (T<>Y) is reduced to injective mapping from the set of representatives to the set of
equivalent join trees (Y — T) with the additional assumption of the equivalence of the
cardinalities (I'Ti = IT1) (This is shown in figure 4).

3.4.3. Coefficient tree

The following definitions are needed for the presentation of the mapping strategy between
join representatives and concrete join trees.

The presented mechanism based on the graph reduction approach described above uses a so
called coefficient vector tree to map any representative i; €Y with i;€N to a concrete join tree
t;. This coefficient vector tree consists of so called coefficient vectors built from coefficients.
The fuseing of disjunct vertices with eliminating multiple edges by concatenation of join
attributes means the reduction of more than one edge at a moment dependent on the graph

10

Join optimization

T={1} T = ()

Figure 4; Injective mapping from Y to T

structure. For instance in a cycle of three vertices and three edges (3-cycle) there remains
only one edge after fuseing two vertices to one.

An edge can be part of many 3-cycles. Removing such an edge and the following melting of
multiple edges implicates that many edges are removed at one time. This means a stronger
reduction of the graph through special edges during the edge elimination. The termn edge value
is defined to describe nominally the reduction strength of an edge:

Definition 2:
The edge value p of an edge e in an undirected graph G(V, E)} with a set of vertices V and
a set edges E and e<E is the grade of reduction of the graph G(V, E) to G"(V’, E) with
p = |EI—1E'l in the case of elimination of e.
Based on edge values there is an unique injective mapping between a given join tree and a so
called coefficient vector. Dependent on the edges of a join graph there exist different rule sets
R, used for the graph reduction taking into account the behavior of edges with higher edge
values (p > 2).
Definition 3
An edge coefficient m; is the count of all edges of the same edge value p in a join sub-
graph G(V, E) without edges which are part of cycles with more than three edges.
Definition 4:
A rule set R, is the set of rules describing the behavior of a concrete base structure of join
graphs and the dependencies of edges during the graph reduction. n is the index of the
greatest edge value in the sub-graph.

Definition 5:
m
-
CH = mﬂ
(id, 5)y,

A coefficient vector c_:, of a join graph G(V, E) is a sorted sequence of edge coefficients

Join optimization

ith i= is the maximal index
with reference to the edge values) m, with i I..n, w}}er-e nis ;
fnelonging to a rule set R,. (id,s) are optional tuples describing cycles with 5 > 3 edgt?s
and #d is a unique cycle identifier. The extension of coefficient vectors by tuples (id, s} is

not necessarily.

Reduction behavior e s
i ior i i he edge values p. It is also strongly

The reduction behavior is not only determined by‘t tis

inffuenccd by the graph construction. On the other side the graph construction mﬂut?nces the

edge values, too. The edge value of a single edge can be calculated in the following way:

p =lcal + 1 with le;l s the count of adjacent 3-cycles.

Rule sets

For different graph schemas different rule sets are pecessary to apply t.he graph I‘f}dl'lctl(m
mechanism. The following rules decribes the behavior of coefﬁments during the rt?ductlon of
one edge. The schemas in table 5 belong to the rules. If for instance one fedge with an edge
value of i is reduced, any edge coefficients are changed. In the case of =1 e.g. only the

coefficient m, is changed.
Rule set I:
r om=m—l
. m2=m9_—3/\m,=m1+1
Rule set 2:
o my=m—1
o My =My —2amy=ma—1
o my =g lamy =my—Adamy = +2

Rule set 3:

. m1=ml—l

. m2=m2~2Am4=m4—IAm3=m3+l

s my = my— Lamg = my — 6amy =ty +3
Rule set 4:

o my=m -1
o my=my—2ams=ms— lamy=my+1
s g = iy — LAmg = iy —8amy = my +4

ctc.

3.4.4, Spanning the solution space

The following approach can be used to calculate the count of all equivalent join trees IT! and
to get an injective mapping from one integer representative to the equivalent join tres:

It is possible to create a join graph Gy (Figure 5 b) from a given joir} 'tree G (Fligurle 3 a).
This join graph is identically for all join trees from a set T. From the join graph in Figure 5

12

Join optimization

rnile 1 rule 2 rule 3 e a

‘Table 5: Examples for rule sets 1 to 4

Figure 5: Join tree and join graph of a eyclic join query

the following coefficient vector can be generated:
m =1
my =3
a=

(fd=1,5=4) g,

The following coefficient vector tree is created by the complete derivation based on the
application of rule set | and the repetition over the coefficient vector (Figure 6). The
numbered arrows represent the accumulated number of equivalent sub-graphs. The coef-
ficient vector tree is created one time during the join graph analysis and allows to calculate the
exact search space size and to derive a concrete join tree teT from a given representative
ueY, which is shown in the following. To catculate the search space size all alternative
counts for further derivations are stored temporarily for each arrow in a top down traversal.
All of them are multiplied with the predecessor values bottom up. The vaiues from alternative

13

Join optimization

1
3 2160
14}
720 1080
360
B o -
0 3 6
L4.] L4 {0
96N 144 16 21 54
0 3 0 6| |3 6
4] 1o] 4] lol to]l (ol
36/\36 18 121\36 54] 18[\18 54]

(=)
w
| o
wr
=
w
R
=
w0
(¥~]

1
!
1

=
o

r

(=]

:

=

;

;
=
f e

.

‘

=

W
[¥.
=

w o-—-:—'-n I
(=,
LA,
(=29
=9
=

(=]
[
=
=
=]
w
=]
w

..m
,
-
o e
o
=P
=

o 1w
5T o o
=
o 1

= 1
S
o |
=3
o
=
o |
=
o |
S |

0 olololololo|
THHTTHTHH
e ojofefojojoijofiofofojojofjoyojo
[ololololokololodolololololololo)
T
0000000000000“000
[ololololoioloiololololololololo]

Figure 6: Cozfficient iree of the example graph

arrows are added. As a result we get the exact count of join trees of the set T,

The mapping from a member of the representatives 10 a deterministic join tree based on the
coefficient vector tree is presented as pseudo code (Figure 7). We assume that edges in the
join tree have a fixed access order independent of remaoved edges.

14

Join optimization

%X .. Bize of the search space
tree .. coefficient vecter tree
treestruct {
int index;
/* coefficient index of */
/* parent node */
int m[idx] [coefficient_cnt
+ ent_of Jarge cycles];
/* coefficlents and large cycles */
/* are mixed together, normal */
/* coefficients have idx = 0 */
int ent;
/* count of alternatives */
tree * next;
/* pointer to the next in */
/* the sane row */
tree * subtree;
/* pointer to first child */
Yi

treestruct *tree, *subtree;
while {(tree->subtree}
{

subtree = tree->subtree);
while (x - subtree-»ent > 0) {
X = X - subtrea-»cnt;
subtree = subtrea-»next;
}
/* index of edge coefficient */
/* for reduction
edge_coefficient = index{subtree);

real subtree_size = subtree->cnt
/ tree->miedge_ccefficlient] [0];
edge_idx = 0;
while((x-real_subtree_size) > 0)
* = x-real_subtree_size;
++edge_1dx;
GRAPH_RED_APDR (edge idx):

}
} while (tree);
GRAPH_RED_APPR ledge_idx)
{

/* create a new vertice from the
adjacent vertices of the edge
with index edge_idx */

/* modify the label of the new

vertice */
/* eliminate multiple edges */

Figure 7: Mapping algorithm

Each selected sub-tree representing uniquely one join may be added to the actual join plan.

If there are base elements with different rule sets the parts can be concatenated in the fol-
lowing way:

This represents the join graph in figure 8. The notation includes two base elements of two dif-
ferent rule sets without cycles of a size p > 3.

15

Join optimization

Figure 8: Join graph made from base elements

3.4.5. Ambiguous join graphs

There is a low probability for join graphs with multiple edges of an edge value p>2
implicating different rule sets. But these graphs are not divisible into the basic join graph
components described above. In this case a coefficient vector tree is not uniquely derivable to
coefficient vectors (Figure 9},

Figure 9: Ambiguous join graph

If such case is detected during the join graph analysis, a conventional optimization strategy
(like the greedy algorithm) has to be used.

4. Summary and conclusions

In this article research results are presented optimizing join trees in a distributed,
heterogeneous, relationa] DBMS based on data flow control. It was shown, that there is no
universal tree shape for multi-way joins with optimal resulls independent from load distribu-
tion and hardware architecture. The attention was focused to the spanning of a complete
search space for join optimization without any invalid elements, This is a prerequisite to apply

16

Join optimization

any approximative search algorithms in an efficient way and to find the global optimum for
complex gueries in a distributed DBMS.

The aim of the future work is to solve the ambiguous problem for complex join graphs and
make it more universally.

References

[AdBh93] R. A. Adam and K. B. Bhargava, “Advanced Database Systems” in Parallel Query
Processing, Springer, Berlin (1993).

[BIL+89] G. v. Biiltzingsloewen, C. Iochpe, R, P, Liedtke, R. Kramer, M. Schryro, K. R. Dit-
trich, and P. C. Lockemann, “Design and Implementation of KARDAMOM — a Set-
oriented Data Flow Database Machine” in 6th Int. Workshop on Database Machines,
Deauville (1989).

[Ch1i85] A. L. P. Chen and V. O. K. Li, “An Optimal Algorithm for Processing Distribuicd
Star Queries,” IEEE ToSE, SE-11, 10 (Oct. 1985).

[ChYu94] M. 8. Chen and S. Yu, “A Graph Theoretical Approach to Determine a Join
Reducer Sequence in Distributed Query Processing,” IEEE Transactions on Knowledge
and Data Engineering, 6, 1 (February 1994),

[DeKT90] 8. M. Deen, M. C. Kannangara, and M. C. Taylor, “Multi-Join on Parallel Proces-
sors” IEEE, pp. 92-102, University of Keele, Dept. of CS, Keele (1990).

[DGS+90] D, T. DeWitt, 8. Ghandeharizadeh, D. Schneider, A. Bricker, H.-1. Hsiao, and R.
Rasmussen, “The Gamma Database Machine Project,” TR 921, CSs Dept., University of
Wisconsin-Madison (March 1990).

[DuKS$92] W. Du, R. Krishnamurthy, and M-C. Shan, Query Optimization in Heterogeneous
DBMS (1992).

[FIL.M95] G. Flach, U. ¥. Langer, and H. Meyer, HED - State of the art in june 1995, Dept. of
C8, Rostock Univ, (June 1995).

[Fong86] Z. Fong, “The Design and Implementation of the Postgres Query Optimizer,” Mas-
ters Report, CS Division, DEECS, University of California, Berkeley, California {(Aug

. 1986).

[GaHK92] §. Ganguly, W. Hasan, and R, Krishnamurthy, “Query Optimization for Parallel
Execution,” SIGMOD Record, 12 (June 1992).

[GrMc93] G. Graefe and B. McKenna, “The Volcano Optimizer Generator: Extensibility and
Efficient Search,” IEEE Conf. on Data Eng., p. 209, Vienna (Apr. 1993).

[HoSt93] W. Hong and M. Stonebraker, “Optimization of Parallel Query Execution Plans in
XPRS” Distributed and Parallel Databases, 1, pp. 9-32 (1993).

[InRo8Y] L. Ingber and B, Rosen, “Very Fast Simulated Re-annealing,” Mathematical Com-
puter Modelling, 12, 8, pp. 967-973 (1989).

[Kang91] Younkyung Cha Kang, “Randomized Algorithms for Query Optimization,” TR
1053, CSs Dept., University of Wisconsin-Madison (October 1991).

[KrBZ86} R. Krishnamurthy, H. Boral, and C. Zaniolo, “QOptimization of Nonrecursive
Queries;” Proc. of the 12th Int. Conf. on VLDB, pp. 128-13 (1986).

[L.YZC93] R. Lanzelotte, P. Valduricz, M. Ziane, and J.-P. Cheiney, Optimization of Nonrecur-
sive Queries in OODBs, INRIA, Rocquencourt, France (1993).

Join optimization

[LaVZ93] R. 5. G. Lanzelotte, P. Valduriez, and M. Zait, “On the Effectiveness of Optimiza-
tion Search Strategies for Paralle]l Execution Spaces,” Proc. of the 19th VLDB Conf.,
Dublin (1993).

[LePP91] P. Legato, G. Paletta, and L. Palopoli, "Optimization of Join Strategies in Dis-
tributed Databases,” Information Systems, 16, 4, pp. 363-374 (1991).

[LuST91] H. Lu, M.-C. Shan, and K.-L. Tan, “Optimization of Multi-Way Join Quezics for
Parallel Execution” in Proc. of the 17th VLDB Conf.,, Barcelona, Spain (1991).

[PaKe86] C. C. Palmer and A. Kershenbaum, Representing Trees in Genetic Algorithms, IBM
T. . Watson Research Center, Yorktown Heights, NY (1993).

[PiHH92] H. Pirahesh, J. M. Hellerstein, and W. Hasan, “Extensible/Rule Based Query
Rewrite Optimization in Starburst,” Proc. ACM SIGMOD, pp. 39-48 (1992).

[8cDe90] D. A. Schneider and I3, I. DeWitt, “Tradeoffs in Processing Complex Join Queries
via Hashing in Multiprocessor Database Machines” in Proc, the 16th VLDB Conf., pp.
469-480, Brisbane, Australia (1990).

[SAC+79] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price,
“Access Path Selection in a Relational Database Management System,” ACM (1979).

[SwGu88] A. Swami and A. Gupta, Optimization of Large Join Queries, Dept. of C8., Stan-
ford University, Stanford (1988).
[Swam89] Arun Swami, “Optimization of Large Join Queries: Combining Heuristics and
Combinatorial Techniques,” ACM, Dept. of CS, Stanford University, Stanford (1989).
[YCWT93] P. §. Yu, M.-S. Chen, §. L. Wolf, and J. Turek, “Parallel Query Processing” in
Advanced Database Systems, Springer (1993).

[ZiZB93] M. Ziane, M. Zait, and P. Borla-Salamet, Parallel Query Processing in DBS3,
INRIA, Rocquencourt (1993),

[ZiZQ93] M. Ziane, M. Zait, and H. H. Quang, “The Tmpact of Parallelism on Query Opti-
mization” in Proc. of Fifth Workshop on Foundations of Models and Languages for Data
and Objects, pp. 127-138 (Sept. 1993).

18

