IRQL — Yet Another Language for Querying Semi-Structured
Data?

Andreas Heuer = Denny Priebe

Database Research Group
Computer Science Department
University of Rostock
D-18051 Rostock
Germany

{heuer, priebe}@informatik.uni-rostock.de
http://wwwdb.informatik.uni-rostock.de

Abstract

In this paper we describe the basic ideas and concepts behind the Information
Retrieval Query Language (IRQL). The principal focus of IRQL development is the
integration of concepts of information retrieval and database query languages. There-
fore, we will be able to exploit the structure of documents and can additionally use
information retrieval techniques regardless of whether the structure is known or not.
Our approach develops a query language that is compatible with the recently adopted
SQLY9 standard and information retrieval clauses (e.g. boolean retrieval). It then in-
tegrates features of database query languages such as (1) exploiting the document’s
structure and (2) restructuring (including linking of multiple documents) and in-
formation retrieval techniques such as (I) content-based retrieval, (II) ranking, and
(III) relevance feedback. Our data model extends the object-relational model and
additionally supports an abstraction of attribute names. We evaluate IRQL queries
by mapping them to queries supported by existing systems such as object-relational
DBMSs, full-text DBMSs, or conventional search engines, and post processing the
results supplied by these systems, if necessary.

IRQL is used as an internal query language for structured and semi-structured
data in the GETESS project.

1 Introduction

During the last years the WWW became generally accepted as a medium to pub-
lish various kinds of information (documents). In general, this information can be
categorized as structured and semi-structured /unstructured. Although storing and
querying of structured data (e.g. using relational DBMSs) are well understood, there
is still no agreement in managing semi-structured data (e.g. data kept in files; possi-
bly using XML). Keeping this potential heterogeneity in mind, it is quite difficult to
search for particular information. On the one hand, there are many search engines
(e.g. Altavista or Infoseek) that permit the search for particular documents as it
relates to their content, but these search engines are often not capable of exploiting

the structure of documents in order to support advanced queries. Additionally, often
data stored in DBMSs are not taken into account, although these search engines
could benefit from the features of database query languages. On the other hand,
pure database query languages are also inappropriate for querying heterogeneous
semi-structured data as it relates to documents. These query languages certainly
support operations on structured parts of documents, but the ability to query semi-
structured data is rather limited and often realized by vendor-specific extensions to
the DBMS.

In this paper we describe the basic concepts of an Information Retrieval Query
Language (IRQL). The principal focus of IRQL development is to unite the features
of database query languages such as (a) access to the data’s structure, (b) use of
type specific information, (c) restructuring, and (d) linking of data and information
retrieval techniques such as (i) content-based retrieval, (ii) vague queries, (iii) ranking,
and (iv) relevance feedback into a single query language. Thus, IRQL allows us to
query both structured and heterogeneous semi-structured data related to documents.

Our approach is to store our data in existing systems such as object-relational
DBMSs, relational DBMSs, or full-text DBMSs. Therefore, we implement IRQL on
top of these systems. In principle, we evaluate IRQL queries by mapping them to the
query languages supported by the corresponding platform as illustrated in Figure 1.
Obviously, we have to post process the results delivered by these platforms as none
of the systems support all of the IRQL features. This post-processing is either done
by wrappers or compensators. Essentially, the difference between wrappers and com-
pensators is that compensators are “big” wrappers, i.e. compensators encapsulate
systems that support only a very limited set of the features of IRQL. To be more
concrete, assume that we want to evaluate an IRQL query on top of a relational
database system and the query includes selection, projection, proximity search, and
ranking functions. First, we map the query’s relational parts (e.g. selection and pro-
jection) of this query to the SQL supported by the RDBMS and evaluate the query.
As a result, we obtain a superset of the “real” result. Now we ask the compensator
to compute the answer to the IRQL query using the result from the RDBMS and the
parts of the IRQL query that could not be mapped to the RDBMS query language
(e.g. proximity search and ranking).

IRQL is used in the GETESS project [SBB199a, SBB*99b] to query the sum-
maries of linguistically analyzed web documents.

The reminder of this paper is organized as follows: In Section 2, we discuss some
related work and compare other approaches with IRQL. We describe our data model
in Section 3. Section 4 presents the syntax of IRQL using some examples. In Section
5, we present two applications of IRQL. We conclude with a summary in Section 6
and mention some future works.

2 Related Work

TRQL unites concepts from database query languages, query languages for semi-
structured data, and information retrieval. In this section, we discuss some query
language proposals that are related to these areas (i.e. we focus primarily on query

L
IR SQL99
N
/\
Compensator Compensator Wrapper
Y Y Y
IR RDBMS ORDBMS

Figure 1: implementation of IRQL

languages for semi-structured and web data) and compare them with our approach.
We do not discuss XML query languages here because these query languages don’t
consider the integration of information retrieval techniques and, in principle, XML
data can also be queried using some of the following query languages.

Most of the existing search engines (e.g. Altavista or Infoseek) use information
retrieval techniques to search for particular (web) documents. Users describe their
search criteria by entering keywords, phrases, or combinations using boolean oper-
ators. However, these search engines don’t normally take the document’s structure
into account, and only selections are primarily supported. Features that are typical
for DBMSs (and also for TRQL) like restructuring (e.g. projection) or joins are still
missing.

Access to the document structure is supported by freeWAIS-sf [PFH95, Pfe95].
Documents can be partitioned into a set of attribute-value pairs. The set of possible
attributes is defined by the document type. One of the pre-defined types is HTML and
further types can be defined by the user. Queries are also limited to selections, but
parts of the document can be queried via attribute names. Users can describe their
search criteria using free text, phrases, wildcards, soundex and proximity expressions,
as well as combinations of these using boolean operators. Comparisons of numeric
values are supported, too. Besides the access to the document’s structure in IRQL,
we also allow for the restructuring of data.

In the past, the disadvantages of exclusively using information retrieval techniques
to query semi-structured data [Abi97, Clu97] has been pointed out by several authors.
As a result, there are numerous proposals and implementations that also integrate
concepts of database query languages. A survey can be found in [FLM98].

Lorel [AQM™97] is the query language of the Lore system [MAG™97]. Syntac-
tically, Lorel is based on OQL. Semi-structured data are supported by using OEM

graphs as a data model and by extending OQL with appropriate features. These
extensions include (a) implicit type casts (type coercion) and (b) regular path expres-
sions. Path expressions and path variables support queries on unknown or partially
known schemas and on the schema itself. Implicit type casts, called type coercion,
address the heterogeneity of semi-structured data. Some variants of content-based re-
trieval (e.g. soundex search) are provided by corresponding predicates. The drawback
of this data model is the missing support of ordered collections'. As a consequence,
for example, no ranking criteria can be specified at the language level.

WebSQL [AMMY97] is based on the relational model and supports an SQL-like
query language. Additional features of WebSQL include dynamic creation of exten-
sions based on content and link structure of web documents, and path expressions.
HTML tags are treated as attribute names in order to access the structure of web
data. The restructuring of HTML pages is not supported.

Compared with OEM graphs, WebOQL [AM98] uses an improved data model.
Hypertrees facilitate the modelling of nested structures and further support ordered
collections. Using the “web” as a data type is the key to providing a number of
operations for restructuring data. The query language is based on OQL and provides
some further possibilities, e.g. the creation of query results. Content-based retrieval
is supported by a grep operator. In our approach, we support further means of
information retrieval, such as term weighting and ranking.

UnQL [BDHS96] uses a graph-based data model. The query language supports
operations such as selection, projection, join, and grouping, as well as path expres-
sions. Both ordered collections and content-based retrieval are not supported.

W3QL [KS95] is the SQL-like query language of W3QS. The focus of this query
language’s development is the reuse of available tools. For example, predicates that
realize content-based retrieval are implemented using external tools. Both nesting of
queries and restructuring of data are not supported.

The aim of the development of the Strudel query language StruQL [FFLS97] is to
provide means for restructuring existing data. In StruQL, semi-structured data are
modelled as an OEM graph. The supported query operations include navigation using
path expressions, projection, and selection as well as operations for restructuring of
existing graphs and for creation of new graphs. In principle, user-defined predicates
could be used to implement content-based retrieval.

WebLog [LSS96] is based on SchemalLog and supports access to the structure of
documents and content-based retrieval by using built-in or user-defined predicates.
The restructuring of data is supported, too. As in IRQL, it is possible to express
recursive queries.

In WQL [LSCH98], both the web and the structure of the individual documents
are modelled. The query language implements projection, selection, sorting, and
grouping. Content-based retrieval and querying the structure of web documents
are supported. From our point of view, missing features are dynamically creating
extensions, nesting, and restructuring.

'Recently, Lorel’s data model has been extended to support XML data [GMW99]. Therefore, ordered
subelements can now be modelled. To the best of our knowledge, it is not possible to express user-defined
rankings in Lorel like it is in IRQL.

Apart from the query languages for semi-structured data mentioned in this sec-
tion, there are also proposals to extend DBMSs. For example, the SQL /MM proposal
[SQLI5] defines a data type full text whose operations support content-based retrieval
for those data that are stored using this data type. Different implementations are
made available by commercial companies in the form of text extenders, data blades,
and so on.

Figure 2 summarizes the features of the query languages mentioned in this section.
We use the following notation to assess the features: + supported, 4+ supported with
limitations, = supported to some extent, and — not supported.

3 Data Model

The principal focus of IRQL development is to implement a query language that
allows to query both structured data (this implies that TRQL adopts features from
database query languages) and semi-structured data. Therefore, IRQL also includes
information retrieval techniques. Apart from the separate use of these two query
types, IRQL integrates both possibilities.

Our data model extends the object-relational data model. There are atomic
types such as? integer, float, boolean, and string. Composite types include the
collections set, bag, 1list, and array as well as the struct constructor. In order to
model heterogeneous semi-structured data, we introduce a composite type doc similar
to the struct constructor, but querying data of this type does not produce any type
checking errors. Within a doc type, we also allow for referencing non-existent labels.

We illustrate the doc type by an example. Figure 3 shows a structured instance of

type
set(struct (name:string, place:string, rooms:integer)).

Figure 4 shows a semi-structured instance containing two tuples. The first tuple type
could be

struct (name: string, equipment: set(string),
drinks: set(string),
price: struct(single: integer, double: integer))

while the second tuple could be of type

struct (name: string, equipment: set(string),
price: struct(single: integer, double: integer,
twin: integer, app: integer)
cards: set(string)).

In our approach, heterogeneous data is modelled as doc type. Therefore, the tuples
from Figure 4 are typed as

doc(name: string, equipment: set(string),
drinks: set(string),
price: doc(single: integer, double: integer))

2We plan to support a large subset of the atomic types mentioned in [SQL99a].

sogengdue] A1onb awos jo

S0INYR9J 17 9INJI

++++++++

l_l
l_l

108

TeuoryeaI-109[qo

[eASLI)8I UBS[OO(
[Teuoryeral

Sorejyeq
[Teuoryeral

108

[euoryeaI-199lqo

Sorejyeq
ydeid pajaqe]

l_l

rWAYDS 91} Suidienb

*SOOP JUSISYIP SUINUI]

SUOT}99[[0D PaIopIo
Sur)ySrom uLI)
Sunyuel

“I1791 Paseq JUIU0D
uoIsInyal

Surd£) Suoxys
sorepdn

U0I01909 9dLA)
suotssoxdxe yjed
a[49s aFen3ue]
[opou eyep

TOUIL

JS-SIVM9

S0TgOM

gd9PPM

OIS

108
ydeid pareqe]

+

1_!
IT

—+
UOISINOAI [RINJONIIS
ydeid paroqe|

[euornye[ol

+
108

100
oo1y 1odAy ydeid WHO

—~ +
l_l

+ +

- +
+ +
100

rwWaDS a1} Suidienb

*SOOP JUAISPIP Surul]

SUOTID[0D PIIIPIO
Sun)ySrom U]
Sunyuel

"I191 Soseq JUSIU0D
UOISINDAI

Surd£) Suoays
sorepdn

uoIf0d adAy
suorssoxdxo yyed
a[49s aFen3ue]
[opou ejep

TOEM

TOuN

TOSIPM

TOOPPM

9107

name place rooms

Neptun Warnemiinde L
Hiibner Warnemiinde 95
Mecklenburger Hof Rostock 21

Atrium Hotel Kriiger Sievershagen 59

Figure 3: structured instance (R1)

name equipment drinks prace
single double
Hiibner bathroom beer 195 235
shower wine
wC
name equipment price cards
single double twin app.
Kriiger bathroom 95 150 185 135 American Express
shower Visa
wC Diners Club
phone

Figure 4: heterogeneous instance (R2)

and

doc(name: string, equipment: set(string),
price: doc(single: integer, double: integer,
twin: integer, app: integer)
cards: set(string)).

As we cannot unify two semi-structured types in general, but need some kind of
notation for semi-structured types, we omit the attribute-value pairs from the doc
type and instead use doc for both types. Therefore, the instance from Figure 4 could
be typed as set(doc). Instances of the doc type are only subject to limited type
checks so that, for example, m.4.qs(R2) only delivers the credit cards accepted by the
Kriiger hotel.

While the modelling of semi-structured heterogeneous data as previously dis-
cussed is not new, our main contribution concerning the data model is to allow a set
of attributes to be abstractly referenced by single attribute names as illustrated in
Figure 5.

For example, we introduce two default attributes if the corresponding data origi-
nated in web documents: source indicates the document’s URL and complete_content

| source complete_content
metadata text
article authors title year abstract sections appendix references
http:/e-lib.informatik. ~ Andreas Heuer IRQL-Yet 2000 In this paper we During the last years the [ABI97] Serge Abiteboul.
uni-rostock.de/2000/ Denny Priebe another describe the basic WWW became generally Querying Semi-Structured
DBIS/IRQL/bncod.ps language for ideas and concepts accepted as a medium to Data. In Foto N. Afrati and
querying behind the ... publish various kinds of Phokion Kolaitis, editors,

semistructured information (documents). Database Theory - ICDT'97
data?

Figure 5: abstract attributes

indicates the full text of the original page. As Figure 5 shows, complete_content is an
abstraction of a set of different attributes, e.g. metadata such as authors and tezt.
Text, in turn, is another abstraction of further attributes such as the abstract or the
references of the modelled article.

In contrast to object-oriented or object-relational database models, the at-
tributes complete_content and text are no tuple-valued attributes. For example,
complete_content would consist of two different components metadata and text in
the object models. Here, complete_content is considered as one text value again.
The advantage of this kind of abstraction operator is the usability for information
retrieval operations. If useful, the complete_content value can be seen as one atomic
value.

The problem that object-oriented and object-relational models (that are used as
implementation models) do not support this kind of abstraction is hidden from the
user: Our abstraction operator is implemented on top of existing object-oriented and
object-relational concepts.

4 Language

The aim of IRQL development is to integrate database query languages and informa-
tion retrieval techniques. Similiar to Lorel, our approach is to realize a query language
in the style of SQL, but we additionally support information retrieval techniques by
adding new clauses. Like some of the query languages mentioned in Section 2, we
also change the type checking rules of SQL to also support querying semi-structured
heterogeneous data.

Because of these demands, we take the recently adopted SQL99 standard
[SQLY99a, SQLIIb] as a starting point. We plan to implement a large subset of the
proposed syntax in order to be able to answer queries conforming to this standard.
Using examples, we subsequently show possibilities for querying semi-structured data
and integrating information retrieval techniques into IRQL.

4.1 Structured and Semi-structured Data

The data model described in Section 3 supports querying structured and semi-
structured data. Structured composite data are modelled as elements of the struct
data type and are therefore subject to the strong type checking as found in e.g.
SQL99. Semi-structured data are modelled as elements of a special data type (doc).
We modify the type checking rules for instances of this data type® so that meaningful
queries are possible, even if the schema is not known or only partially known. These
modifications include: (1) incompatible data types are casted to compatible types, if
necessary and (2) in heterogeneous data, non-existent attributes may be referenced.
The concrete semantics are dependent on the type operation used. For example, a
non-existent attribute referenced in a projection is ignored for each tuple it does not
appear in. Therefore, the operation’s result is again heterogeneous. Selection predi-
cates referencing such attributes are evaluated to false. (3) Partially known schemata
can be queried using path expressions and path variables. For example, the query

select r.name, ##z, r.cards
from R2r, r.price.{.*}z
where ##z < 200

name single double

Hiibner 195 235

name single double twin app. cards
Kriiger 95 150 185 135 American Express
Visa

Diners Club

Figure 6: heterogeneous result

results in the heterogeneous instance shown in Figure 6. R2 denotes the instance from
Figure 4. The elements of this set are typed as doc and are therefore subject to the
type checking rules mentioned earlier. In the from clause, regular path expressions are
used and the path variable z is declared. The regular path expression {.*} expands to
all existing attributes below price. The appended (optional) label z denotes the cor-
responding variable name. The expression ##z dereferences the path variable z and
is substituted by the complete paths (in this example R2.price.single, R2.price.double
for the first tuple, as well as R2.price.single, R2.price.double, R2.price.twin and
R2.price.app for the second tuple). The attribute cards referenced in the select
clause is ignored while processing the first tuple as there is no such attribute there.
If one or more prices are string types, these prices would have to be converted to
numeric values to evaluate the predicate ##z < 200. If such a conversion is not
possible, the predicate is evaluated to false.

3Essentially, we adopt the techniques (primarily Lorel’s) used in existing query languages for querying
semi-structured data.

price
name)
single double

Hiibner 195 235
Kriiger 95 150

Figure 7: instance (R3)

The integration of structured and semi-structured data is realized by modelling
these data as instances of different data types. For example, let the instance shown
in Figure 7 be of type

set(doc(name: string,
price: struct(single: integer, double: integer))).

The query

select r.price.single, r.address
from R3r

delivers the prices of all single rooms because the non-existent attribute address is
directly ignored within a doc type. But the query

select r.price.app, r.address
from R3r

leads to a runtime error because the price is modelled as a struct type where non-
existent attributes may not be referenced.

As illustrated previously, the difference between operations on structured and
semi-structured data can be modified in order to be valid for other operations, too.

4.2 Extensions

In IRQL, there is one basic extension describing all known documents. We call this
extension d_world. In order to avoid considering all these documents in every query,
we introduce some possibilities to create further (e.g. smaller) extensions. Useful
criteria include (1) information about how or whether a document can be reached via
a particular path, (2) the language of documents, (3) the possibly named document
types, and (4) the document’s domain. We express each of these as an extension to
the from clause. The extension (coll) of documents that are reachable starting from
a given URL is determined by

(coll) REACHABLE FROM (URL) [DEPTH (value)] [LOCAL].

As options, a maximum path length (DEPTH parameter) can be specified or only
local documents can be chosen. All documents in a given language can be determined
by

(coll) IN LANGUAGE (lang).

The clause

10

(coll) OF [NAMED] TYPE (tycon)

creates a document extension for other possibly named type. If the keyword NAMED
is omitted, tycon stands for a type constructor, otherwise it is a label like postscript
(PS). Finally,

(coll) OF DOMAIN (domain)

determines the extension of all documents of a given domain (e.g. tourism).

4.3 Information Retrieval

In the following, we describe a further extension to SQL99; namely predicates that
implement information retrieval techniques (e.g. content-based retrieval, soundex
and proximity search, term weighting and ranking of query results). These possibil-
ities are particularly suited for, but not limited to, semi-structured data.

4.3.1 Content-based Retrieval

We denote content-based retrieval by the clause

(attribute) CONTAINS (text)
ATLEAST (value)] [ATMOST (value)]
WITH WEIGHT (value)]

CASE SENSITIVE| [SUBSTRING|
({(value) | NO) ERRORS].

The following optional parameters exist: (1) ATLEAST, ATMOST specifies how of-
ten tert must occur in attribute. If the number of occurrences of text is not within the
specified bounds, the predicate is evaluated to false. If one or both of the parameters
are omitted, no limit is assumed. (2) WITH WEIGHT specifies the weight of the
query term. The default value is a weight of one. (3) By default, the search is case
insensitive. This can be changed by specifiying the CASE SENSITIVE parameter.
(4) SUBSTRING specifies not only matching word bounds (e.g. spaces) but also
searching for any occurrence of the given substring. (5) There is also a possibility for
considering typing errors (see glimpse [Har] how this can be realized) by specifying a
value for the ERRORS parameter. By default, no typing errors are considered. The
values of text can be either keywords or phrases. Furthermore, we support regular
expressions (wildcards) here.

—

4.3.2 Soundex
The soundex algorithm allows the search for phonetically similar keywords or phrases.
We denote the soundex search by

(attribute) SOUNDEX (text)
[ATLEAST (value)] [ATMOST (value)].

The meaning of ATLEAST and ATMOST can be taken from Section 4.3.1. Further
parameters mentioned there are not meaningful within the context of a soundex
search.

11

4.3.3 Proximity

The next supported concept of content-based retrieval is the proximity search. Using
a proximity search, it is possible to specify the distance between two keywords or
phrases. The denotation is as follows:

(attribute) CONTAINS

(text) [WITH WEIGHT (value)]

[(value) (unit)] BEFORE | AFTER (text) [WITH WEIGHT (value)]
[ATLEAST (value)] [ATMOST (value)]

[CASE SENSITIVE] [SUBSTRING]

[((value) | NO) ERRORS)].

Here, we only describe the new parameters. The others can be found in Section 4.3.1.
The new parameter unit can be substituted by a type-dependent unit. For example,
if d is a N TEX document and a method exists to split this document into sections,
then

d CONTAINS ¢ ‘related work’’ 2 SECTIONS BEFORE
“‘conclusion’’

is a valid predicate that checks whether d contains the phrase “related word” not
more than 2 sections before the keyword “conclusion”.

4.3.4 Ranking
We support ranking results by user-defined criteria. Syntactically, this is denoted by

RANK BY fo,..., fn
[LIMIT TO (value)]

The f; denote user-defined functions that define the calculation of the retrieval
status value (RSV). The RSV is an attribute that is appended by the rank by clause
and, after calculating this value, the result is sorted by RSV. Although we next
plan to support the vector space model, we don’t need to change our syntax if we
implement a probabilistic model, as the following example demonstrates:

SELECT RSV, name
FROM hotels d
RANK BY d.stars=5, d.beachdist=0

In this query we define a ranking using boolean predicates. These predicates are not
evaluated to true or false, but define the “best” hotel. Thus, the retrieval status
value of one is assigned to a five-stars-hotel directly situated at the beach. Using
probabilistic methods, the other hotels are ranked accordingly.

The optional part of the rank by clause is used to limit the number of returned
elements to value. By default, the number of elements is unlimited.

12

4.3.5 Compatibility with DBQLs and Information Retrieval

On the one hand, compatibility with SQL is achieved if there are no semi-structured
data, and therefore, no doc type data in any of the extensions queried. In this
case, any query that is a valid query within the supported subset of SQL99 is also
a valid IRQL query and delivers the same result. On the other hand, compatibility
with information retrieval expressions is achieved by transparently mapping these
expressions to TRQL queries, as the following example demonstrates: Assume we
are interested in a hotel near the beach. Using one of the search engines, we would
probably enter

hotel and beach.

This expression is also accepted by IRQL and transparently mapped to*

select (default_projection)

from (default_extension)

where (default_attribute) CONTAINS “hotel” AND
(default_attribute) CONTAINS “beach”.

The default values can be adjusted within the TRQL shell. A good choice would
be to use source,title as default_projection, d_world as default_extension, and com-
plete_content as default_attribute. In this simple example the resulting query

select source,title

from d_world

where complete_content CONTAINS “hotel” AND
complete_content CONTAINS “beach”

delivers the expected information.

5 Applications

The TRQL language is used in two different projects:

In the BlueView project®, digital library services are developed and partially
implemented based on the architecture of virtual document servers. Using stan-
dard tools like full-text database or information retrieval systems, object-relational
database management systems, and replication and caching services, different het-
erogeneous local document servers have been integrated into one local server. IRQL
is the query language for this integrated local document server because it can be
implemented on top of these different platforms.

In the GETESS project®, we analyse web documents using linguistic and domain-
specific knowledge [SBBT99a, SBBT99b] and use the data gathered in this way to
answer user queries. Here IRQL serves as an internal query language. Within this
context, we use some default attributes if the corresponding data originated in web

4For simplicity, we ignore the ranking.
Shttp://wwwdb.informatik.uni-rostock.de/blueview
Shttp://www.getess.de

13

documents: e.g. the attribute “source” points to the URL where the data are gath-
ered from; the attribute “complete_content” contains the full text of the original

page.

6 Conclusion and Future Work

In this paper we present our approach for developing an Information Retrieval Query
Language (IRQL). The used data model distinguishes structured and semi-structured
heterogeneous data based on type information and supports an abstraction of at-
tribute names. TRQL integrates concepts of database query languages, query lan-
guages for semi-structured data, and information retrieval techniques. The starting
point of IRQL development is SQL99, which we extend with new clauses to integrate
information retrieval techniques. Furthermore, we modify the type system to support
semi-structured heterogeneous data. IRQL7 is built on top of existing systems such
as object-relational DBMSs, relational DBMSs, or full-text DBMSs. The current
prototype implementation has been built on top of DB2 and its text extender.

To the best of our knowledge, there is no similar proposal that attempts to inte-
grate features of these three areas.

Future works include the complete formalization of the query language and the
development of an algebra.

References

[Abi97] Serge Abiteboul. Querying Semi-Structured Data. In Foto N. Afrati and
Phokion Kolaitis, editors, Database Theory - ICDT 97, 6th International
Conference, volume 1186 of Lecture Notes in Computer Science, pages
1-18, Delphi, Greece, January 1997. Springer Verlag.

[AM98] Gustavo O. Arocena and Alberto O. Mendelzon. WebOQL: Restructur-
ing Documents, Databases, and Webs. In Proceedings of the Fourteenth

International Conference on Data Engineering, pages 24-33, Orlando,
Florida, USA, February 1998. IEEE Computer Society Press.

[AMMY7] Gustavo O. Arocena, Alberto O. Mendelzon, and George A. Mihaila.
Applications of a Web Query Language. In Proceedings of the 6th Inter-
national WWW Conference, Santa Clara, California, 1997.

[AQM™97] Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom, and
Janet L. Wiener. The Lorel Query Language for Semistructured Data.
International Journal on Digital Libraries, 1(1):68-88, 1997.

[BDHS96] Peter Buneman, Susan B. Davidson, Gerd G. Hillebrand, and Dan Suciu.
A Query Language and Optimization Techniques for Unstructured Data.
In H. V. Jagadish and Inderpal Singh Mumick, editors, Proceedings of the
1996 ACM SIGMOD International Conference on Management of Data,

"http://wwwdb.informatik.uni-rostock.de/irql

14

[Clu97]

[FFLS97]

[FLMY8]

[GMW99)]

[Har]
[KS95]

[LSCH98]

[LSS96]

[MAG*97]

[Pfe95]

[PFHY5]

volume 25(2) of SIGMOD Record, pages 505-516, Montreal, Quebec,
Canada, June 1996.

Sophie Cluet. Modeling and Querying Semi-Structured Data. In
Maria Teresa Pazienza, editor, Information Extraction: A Multidisci-
plinary Approach to an Emerging Information Technology, International
Summer School, SCIE-97, volume 1299 of Lecture Notes in Computer
Science, pages 192-213, Frascati, Italy, 1997. Springer Verlag.

Mary F. Fernandez, Daniela Floresu, Alon Y. Levy, and Dan Suciu.
A Query Language for a Web-Site Management System. In SIGMOD
Record, volume 26(3), pages 4-11, 1997.

Daniela Florescu, Alon Y. Levy, and Alberto O. Mendelzon. Database
Techniques for the World-Wide Web: A Survey. In SIGMOD Record,
volume 27(3), pages 59-74, 1998.

Roy Goldman, Jason McHugh, and Jennifer Widom. From Semistruc-
tured Data to XML: Migrating the Lore Data Model and Query Lan-
guage. In Sophie Cluet and Tova Milo, editors, ACM SIGMOD Work-
shop on The Web and Databases (WebDB’99), pages 25-30, Philadel-
phia, Pennsylvania, USA, June 1999. INRIA. Informal Proceedings.

Harvest. http://harvest.transarc.com.

David Konopnicki and Oded Shmueli. W3QS: A Query System for the
World-Wide Web. In Umeshwar Dayal, Peter M. D. Gray, and Shojiro
Nishio, editors, VLDB’95, Proceedings of 21th International Conference
on Very Large Data Bases, pages 54—65, Zurich, Switzerland, September
1995. Morgan Kaufmann Publishers.

Wen-Syan Li, Junho Shim, K. Sel¢uk Candan, and Yoshinori Hara.
WebDB: A Web Query System and its Modeling, Language, and Imple-
mentation. In Proceedings of the IEEE Forum on Research and Technol-
ogy Advances in Digital Libraries, IEEE ADL’98, pages 216-227, Santa
Barbara, CA, USA, April 1998.

Laks V. S. Lakshmanan, Fereidoon Sadri, and Iyer N. Subramanian. A
Declarative Language for Querying and Restructuring the WEB. In Pro-
ceedings: Sizth International Workshop on Research Issues in Data Engi-
neering — Interoperability of Nontraditional Database Systems, IEEE-CS
1996, pages 12-21, New Orleans, Louisiana, USA, February 1996.

Jason McHugh, Serge Abiteboul, Roy Goldman, Dallan Quass, and Jen-
nifer Widom. Lore: A Database Management System for Semistructured
Data. In SIGMOD-Record, volume 26(3), pages 54-66, September 1997.
Ulrich Pfeifer. free WAIS-sf. Universitat Dortmund, October 1995. Man-
ual of the enhanced freeWAIS distribution.

Ulrich Pfeifer, Norbert Fuhr, and Tung Huynh. Searching Structured
Documents with the Enhanced Retrieval Functionality of free WAIS-sf
and SFgate. In Proceedings of The Third International World-Wide Web
Conference, Darmstadt, Germany, April 1995.

15

[SBB+99a]

[SBB+99b)

[SQL95]
[SQLY99a]

[SQLIYb]

Steffen Staab, Christian Braun, Ilvio Bruder, Antje Disterhoft, An-
dreas Heuer, Meike Klettke, Glinter Neumann, Bernd Prager, Jan Pret-
zel, Hans-Peter Schnurr, Rudi Studer, Hans Uszkoreit, and Burkhard
Wrenger. A System for Facilitating and Enhancing Web Search. In
IWANN ’99 — Proceedings of International Working Conference on Ar-
tificial and Natural Neural Networks, Alicante, ES, 1999.

Steffen Staab, Christian Braun, Ilvio Bruder, Antje Disterhoft, An-
dreas Heuer, Meike Klettke, Gunter Neumann, Bernd Prager, Jan Pret-
zel, Hans-Peter Schnurr, Rudi Studer, Hans Uszkoreit, and Burkhard
Wrenger. GETESS — Searching the Web Exploiting German Texts.
In M. Klusch, O. Shehory, and G. Weiss, editors, Cooperative Informa-
tion Agents III, Proceedings 3rd International Workshop CIA-99, volume
1652. Springer Verlag, July 1999.

ISO Working Draft, SQL Multimedia and Application Packages
(SQL/MM), Part 2: Full-Tezt, September 1995.

ANSI X3H2-99-078/WG3:YGJ-010, (ANSI-ISO Working Draft),
Framework (SQL/Framework), March 1999.

ANSI X3H2-99-079/WG3:YGJ-010, (ANSI-ISO Working Draft), Foun-
dation (SQL/Foundation), March 1999.

16

