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Abstract. Based on an analysis of typical automotive measurements
data as found in ASAM MDF files, we derive requirements managing
these data in a database system and create a mapping to a relational
database structure. The performance of a parallel relational storage gets
compared to direct access and querying time-series from Python in dif-
ferent scenarios. A hybrid approach using some object-relational features
of PostgreSQL performs best in most cases.
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1 Introduction and Motivation

In the automotive industry the amount of collected sensor data is continuously
growing. This imposes new requirements on the IT infrastructure regarding ac-
quisition, storage, preprocessing and analysis of data. Nowadays, big data frame-
works mostly rely on database software systems. Therefore, our investigations
will consider these primarily. We compare several hardware and software sys-
tems and show to what extent they meet the requirements. In this paper we
explain how database oriented solutions for storage and analytics can be used
to effectively handle time series sensor data.

The paper is structured as follows. In the second section a summary on re-
search projects and established systems that combines time series management
and database techniques is given. The following sections gives a brief overview
of classic automotive analysis methodology, including the standardized measure-
ment file format MDF and a set of basic operations. This overview is used as a
motivation for the database supported solution presented in section 4, which is
evaluated in section 5. Lastly, a conclusion is given in section 6 with a description
of future research opportunities we consider to investigate.

2 State of the Art

To the best of our knowledge, there are no research projects that combine the
standardized automotive data format ASAM MDF and database technology,
but many efforts have been taken for managing efficiently time-series data in
databases. At least, Johanson [10] calls for information and communication sup-
port for automotive testing and validation.
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Seminal work of managing time-series data was already done starting in the
1990s, e.g. Chandra [4] describes how to manage temporal financial data in an
extensible relational database. In his PhD thesis [3], Castillejos focusses on mod-
els for mapping time-series data to relational databases. Modelling univariate,
multivariate and irregular time-series is lined out, compared and validated. The
approach didn’t take advantage of nested (object-relational) structures and aims
at stock price scenarios. The sequential character of time-series and their large
scale volatile data sets led to specialized systems for data streams. Issues in data
stream management are discussed by Golab and Öszu[7]. The importance of ef-
ficiently manage time-series data is demonstrated by e.g. several Google patents
[9] among others.

Intensive research has already be done on indexing, querying and mining
time series data at large. Ding et al.[6] give an experimental comparison of
representations and distance measures for querying and mining of time-series
data, where Zoumpatianos [20] focusses on indexing very large data sets. Keogh
et al. [11] summarizes the state-of-the-art in indexing and mining large time-
series databases.

Aside research done on managing and querying time-series data, there are
several systems capable of managing sequential data. At the time of writing,
Wikipedia lists fifteen time-series database systems, like InfluxDB, Informix
TimeSeries, and TimescaleDB. These systems are relational, object-relational
or use more flexible storage models like NoSQL systems and cloud data man-
agement does. An overview of time-series storage and processing in a cloud
environment is presented in [18]. [19] describes how to manage very large sensor-
network data using bigtable, Google’s variant of a column family data storage in
a distributed file system (GFS). Call [16] for a comparison of NoSQL time-series
databases.

3 Specification of Data Formats and Analysis

In this section, we give a brief overview on traditional automotive data analysis,
including a short description of the MDF file format, as well as examples of basic
automotive data analysis. All these aspects directly influence the design of the
database support approach discussed in section 4.

3.1 The ASAM MDF File Format

The Measurement Data Format (MDF) is a binary file format that has been
originally developed for automotive measurement and analysis in the 1990’s. It
has been officially standardized with version 4.0 by the Association for Stan-
dardization of Automation and Measuring Systems (ASAM) in 2009 and is up
to this point one of, if not the standard for storing and reading automotive time
series data in industrial usage. [2]

The MDF file format stores time series of channels clustered in channel
groups. Every channel of a group shares the same time axis. Internally, MDF

https://en.wikipedia.org/wiki/Time_series_database
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files are organized in a complex system of structured blocks which are combined
by pointers in order to allow fast navigation. [17]

3.2 Basic Automotive Data Analysis

One of the basic approaches for automotive analysis is to read and process MDF
files via an high-level programming language like Python or Matlab as analysts
usually have comparatively little time for a wide range of operations and varying
data. Naturally, there are many different and practically relevant forms of anal-
ysis that can be done with structured automotive data. Her, we focus on two
basic scenarios we have investigated that do overlap with a wide range of typical
automotive analysis and are evaluated in section 5. The first scenario revolves
around the investigation of a set of channels over several test runs, which are all
stored in individual files. Such a comparison requires multiple basic operations,
like the conversion of sensor data from its raw fixed-point form to meaningful
physical values, usually stored in double precision. Depending on the problem
and the corresponding channelgroups, the converted time series need to be in-
terpolated, so that all channels share the same time axis. This is fundamental
for further inter-channel processing, like pointwise comparisons and operations,
for instance finding intervals under constraints [e.g. (channel A)2 > channel B]
or a mapping of multiple channels to a new time series using basic arithmetic
operations. Interpolation of channels also called ”time merge” can be done in
many different forms. This is, next to the selection and conversion of channels,
one of the fundamental operations that is worth pushing near the data source,
as it can heavily reduce network traffic. Contrary to this, a last set of operations
does frequently include the visualization of interpolated and composed channels;
a step that is best processed locally via data visualization libraries.

The second scenario we have investigated can rather be described as a meta-
information query as its purpose is to find files or measurements that satisfy a set
of requirements. As will be seen in subsection 5.2, these types of preprocessing
steps can be done very efficiently in database systems as these are designed for
these kind of restricted inter-file selections.

These two scenarios have functioned as a starting point for our investiga-
tions, while more sophisticated applications like peek, outlier or overall pattern
detection might be included in future research.

3.3 Limitations of an MDF-based Analysis

Naturally, any approach on measuring and processing data that can vary ex-
tremely in size and structure cannot come without its limitations. As the MDF
file format can store (and compress) streaming data of multiple local devices,
while offering a structure that allows fast and selective data access, its com-
plex pointer-based design is somewhat based on the premise of local availability.
This assumption is also based on the observation that packages we have tested
for reading MDF files cannot run simultaneously on a single file, i.e., they are
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Fig. 1. Vertical architecture for database-supported automotive analysis. Blue borders
represent individual nodes.

implemented for single threaded use and are not re-entrant.1 The latter is no
constraint if data is available on local storage.

While MDF4 files do not have a restriction on its actual size, analyzing a
set of large or even many moderate size files can become hardware demanding
for local setups. Neglecting possible main memory shortages on long measure-
ments, the disk storage problem can be worked around using network drives.
However, as MDF files cannot be accessed from multiple instances at once, use
cases where several analysts work on the same set of files need to implement
additional scheduling strategies. Despite these restrictions on computability, the
network drive approach is used as a reference for the performance of the database
approach described in section 4 and evaluated in section 5.

4 Database Support

In order to overcome imminent data size limitations we reviewed solutions that
are based on database support with Python front ends using a conventional
vertical architecture as depicted in Figure 1. Hereby, we took two groups of
systems into considerations:

1. relational database systems, and
2. NoSQL database systems combined with Apache Spark.

1 Two python packages were evaluated and asammdf choosen for better performance.
Actually, the documentation for mdfreader 3.2 claimes to be optionally multi-
threading usable while the favored asammdf produces non-repeatable read in multi-
threading application.
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These system does not only offer scalability, but many more advantages that can
benefit automotive designs, such as:

– central and consistent data storage
– isolated, simultaneous access on data
– transparent physical and logical optimization
– parallel query processing
– fast selective queries via index structures
– data security

We investigated either storing converted time series or raw fixed-point data with
its corresponding conversion rules and online conversion into its floating-point
representation. Furthermore, we differentiated between local and cluster com-
putations and took a set of three basic automotive analysis (including the two
scenarios described in subsection 3.2) for possible experimental evaluations.

In the following subsections we describe aspects that fundamentally influ-
enced the efficiency and choice of the developed database models. Hereby, we fo-
cus on relational database systems, especially PostgreSQL and its parallel branch
Postgres-XL [1] as both offer a wide range of functionality, a BSD-like license
and has shown promising results for the described automotive scenario.

4.1 Choice of Database System and Compression

As channels that are stored in channel groups share the same time axis and
therefore hold the same length, one can suspect that MDF data is suited for
relational storage schemas. However, the efficiency of read and write operations
does heavily depend on the internal storage of data and additional functionalities
of the database system. Especially the aspect of sequential and ordered storage of
time series is fundamental for at least two reasons. First, if combined with index
structures, time series can be accessed using as few database page requests as
possible and thus optimizing data access. As a second point one needs to consider
that automotive data is heavily compressible, especially in the context of run
length encoding(RLE). To put this into perspective: storing a MDF3 file with
approximately 800 MB of data led, depending on the systems and schemas we
tested, to database sizes between 140 MB and 25 GB. As shown in Figures 2
and 3, sequential storage and therefore the potential of RLE can be achieved
by either using array data types in row stores or strictly relational schemas
with column stores (as array data types have not been supported by the column
stores we have evaluated). While conceptually similar, the degree of compression
has been shown to be more effective in row stores with arrays (Postgres) than
in column stores using strictly relational schema. With these findings we could
already neglect a popular row store that does not support array data types and
has proven to be unsuited for this kinds of analysis in initial tests.

4.2 Choice of Schema

With the insights on the necessity of data compression, we developed 4 different
database schemas in order to satisfy the requirement of either storing raw data
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name time values

A 0 0.2

A 1 0.4

A 2 0.6

B 0.5 6.4

B 1.5 5.4

Exemplary Relation

row store

... A 0 0.2 A 1 0.4 A ...

column store

... A A A B B 0 1 ...

Simplified Internal Storage Scheme

Fig. 2. Simplified representation of inter-
nal storage for strictly relational schemas
of time series. Contrary to column stores,
row stores do not store time axis and
samples sequentially for the correspond-
ing schema.

name time[ ] values[ ]

A {0,1,2} {0.2,0.4,0.6}

B {0.5,1.5} {6.4,5.4}

row store with arrays

... A 0 1 2 0.2 0.4 0.6 ...

Exemplary Relation

Simplified Internal Storage Scheme

Fig. 3. Simplified representation of inter-
nal storage for object-relational schemas
of time series. Row stores that support ar-
ray data types are able to store time series
sequentially.

(bit varying) and its conversion rules, or converted floating point data (double
precision). Besides the conversion aspect, the schemas differ in whether they in-
clude array data types or only atomic data types as discussed in the previous
subsection. The entity relationship model of the schema that incorporates ar-
rays and stores floating point data is depicted in Figure 4.2. This is the most
compact model, as it does not need to include conversion rules and can neglect
extra attributes necessary to enumerate time series entries. Nevertheless, the
core of the representations is the same. Meta-informations for files, devices and
channels are stored in individual tables and are replicated in cluster scenarios.
All time axis are stored separately from the time series with defining file and
group identifiers. Time series are defined by the identifiers of the file, the chan-
nelgroup and the channel (from the channel dictionary) and both, timestamps
and samples have been distributed by file on the cluster, in order to maximize
performance for intra-file queries. Converted data samples are stored in one big
table, while in raw data scenarios sample data is stored clustered with samples
that use the same conversion rule (we have faced 4 different conversion rules
in our test data). Initially, we have created a view timeseries that merged all
the converted data into the same schema the table of the floating point scenario
has, hoping that we could reuse all procedures written for the corresponding
case. Unfortunately, we have found that selections in Postgres could not be con-
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Fig. 4. Entity relationship model of the floating point schema for database systems
that support arrays. Dashed borders in combination with arrows describe weak entity
relationships.

sistently pushed onto the original tables, leading to unnecessary conversions of
numerous channels. Therefore we needed to rewrite queries, manually adjusting
selections and unions. Due to the large amount of channel data that is stored in
the timeseries table(s), it is essential to use index structures. In fact, one of
the parallel relational systems that have been tested does not support those to
this point and needed to be neglected, due to weak performance. Currently, we
are using mostly multidimensional b-trees on the aforementioned identifiers to
allow for fast selections on either, files, groups, channels or even combinations
of them. As a provisional conclusion on schemas we can state that using arrays
have shown to be very effectiv, even though data has to be unnested for fur-
ther operations and other database systems tested that do not support arrays
are usually considered faster. Superior compression and faster channel selection
capabilities, because of fewer tuples have shown to be essential for this kind of
scenarios.

4.3 Data Import

Compression does not only influence the database size itself, but should also be
considered when data is written into or fetched from the database. Currently
we are reading MDF files via the Python package asammdf [5], reorganizing the
data according to the respective database schema and either sending data to the
database system via Python-database-connector or writing CSV files in order to
enable the use of bulk load functionalities. Hereby, the latter method usually out-
performs the direct Python-DB-connection, but is still comparatively slow, due
to costly disk operations. We have found, that the connections between Python
and databases cannot benefit from internal compression of data, meaning that
arrays in python are sent in a decompressed form to the database system, where
data will be compressed again. In order to speed up the import, we consider the
implementation of a combination of the following techniques. First and foremost,
the most effective approach is to avoid unnecessary data communication at all
by pushing the import functionality into the database system. Unfortunately,
this step is heavily dependent on the possibility of writing complex UDFs in a
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concrete database system and therefore compromises the system independency
of a database solution. Nonetheless, this approach would most likely heavily
speed up the import as communication and file writing costs have shown to be
the defining performance factor. The second possibility is to communicate time
series data in compressed form and adjust its form in the database via internal
queries or UDFs. This solution does ensure lower communication costs and is
independent of the database system used, but will most likely be not as efficient
as the import pushdown. Lastly, an easy way to improve the throughput of the
import is to process multiple files at once. However, this is not sufficient for
scenarios with big or few files.

4.4 Push-Down of Operations into the DBMS

As displayed in Figure 1 one of the main concepts is the pushdown of operations
from an high level language (Python) into the database (Postgres). In previ-
ous research, we have shown that, depending on the scenario, many operations
can benefit from SQL-based processing for a multitude of reasons [12,13,14,15].
These include performance, interchangeability of underlying database systems,
due to the standardization of SQL, as well as data security or data privacy via
manipulation of queries [8].

Based on the overview in subsection 3.2 we have implemented the pushdown
of several operations, in order to minimize communication costs. As selections
and projections are conceptually predestined for in-database processing, we in-
vestigated more advanced methods like the time merge, the conversion of raw
data or the composition of new time series via pointwise arithmetic operations
of channels. While all of these can be computed via ANSI:SQL statements, we
have found that only our implementation of the zero-order hold time merge is
inefficient and therefore tested an UDF implementation in Postgres. This step
has been proven effective (especially for local setups) as can be seen in subsection
5.1.

5 Evaluation

In this section we evaluate the performance of the two basic scenarios from
subsection 3.2, comparing a Python implementation with the most promising
approaches in PostgreSQL 11.3 and Postgres-XL 10r1. Both test cases are eval-
uated on a local setup with 5 MDF files with an overall size of 3.7 GB, as well
as on a cluster with 43 MDF files with an overall size of 50 GB.

For the local setup a notebook with a 4 × 2.1GHz Processor, 12 GB DDR-3
RAM, 250 GB SSD disk space and Ubuntu 18.04.2 has been used. Here, Post-
greSQL runs on the same notebook and the MDF files are stored on the solid
state disk. In the cluster setup, Python does also all the processing on the same
notebook, but the MDF files are stored on a cluster and are accesed via network
drive. Postgres-XL runs on the same cluster, using 5 homogeneous processing
nodes with 2 × 1.9 GHz, 16 GB DDR3 RAM, 20 GB SSD disk space for the
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Fig. 5. Experimental evaluation of the lo-
cal channel selection scenario over 5 mea-
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plot as described in subsection 5.1.
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Fig. 6. Experimental evaluation of the
cluster channel selection scenario over 5
measurements, including a time merge
and plot as described in subsection 5.1.

operation system and software, as well as 1 TB SAS 7.2K disk space for data.
All nodes are connected via a 2 × 10 Gigabit network. On each processing node
run 2 data nodes and 1 coordinator. As the default configurations of Postgres are
usually leading to underwhelming performances all instances (including the local
setup) have been slightly adjusted, offering more main memory for buffers and
garbage collection. Every experimental data point presented is the average out of
10 runs in order to compensate for variances, due to non-connected influences.

5.1 Channel Selection over Multiple Measurements

In Figures 5 and 6 the experimental evaluation of the first scenario from sub-
section 3.2, the selection and plotting of different channels over numerous files,
is depicted. Here, we have tested array-based schemas in Postgres, differenti-
ating between in-database channel conversion or floating point storage and a
pushdown of time merge (via UDF) into Postgres or interpolating time series
in Python. Naturally, online channel conversion should be slower than storing
already converted data as it takes additional operations. Anyhow, the purpose
for the inclusion of conversion steps is on the hand to show that it is possible
to convert raw data online in database systems and on the other that it should
take comparatively little time to do so.

The scenario investigates 5 MDF files and fetches a randomized choice of
channels (the same for all systems in one run) with varying numbers.

In the local setup (Figure 5) only 5 files have been stored on the notebook, due
to space limitations. Anyhow, it can be seen that all Postgres solutions clearly
outperform the pure Python implementation. Furthermore, the time merge push-
down has proven very benefical, as these solutions do scale better in respect to
the number of channels as all the other approaches.
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Counter-intuitively, this does not hold for the cluster scenario as can be seen
in Figure 6. Here, 5 out of 43 MDF files are randomly chosen for each run.

It can be seen that Python is generally faster when time merges are not
pushed down, but slower when non-merged channel data is queried from Postgres-
XL. Anyhow, it can be seen that with increasing number of channels the pure
Python solutions might scale better than the Postgres approach storing con-
verted data.

We suspect a number of different reasons for this findings. First and foremost,
as a relatively young project with a comparatively small developer team, we
expect some unintended and not yet optimized behavior. As an example one can
see that the online conversion with a time merge in Python is faster than the
version that stores the already converted data, although it takes lesser operation
to process.

Additionally, we have found that UDFs are inexplicably slow in Postgres-
XL, especially when accessing array data. Therefore we are considering to test
similar implementations on commercially established parallel database systems
that also support array data types in order to verify our claims.

A second factor to consider is, that our current test data can not be considered
big data (at least in compressed form). This might weaken potential benefits of
communication costs and in-database processing.

5.2 Finding Measurements under Constraints

The experimental results of the second scenario from subsection 5.2 can be seen
in Figures 7 and 8. In both cases (local and cluster) all available measurements
have been checked, whether they fulfill a given set of requirements. These include:
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– a set of given channels need to be measured,
– channels had to be recorded with a given sample rate,
– the measurement had to be done in a certain period of time, and
– the measurement length had to surpass a given threshold.

Here, the time series itselves only need to be checked for existence, but the time
axis of every channelgroup have to be evaluated for minimum and maximum
values. In the local setup 3 out of 5 files fulfill the requirements, whereas 19 out
of 43 do on the cluster. Both, Figures show that these highly selective inter-
file problems can be done very efficiently in database systems, outperforming
pure Python solutions by quite a margin. These results do clearly motivate
including database technology in automotive analysis, especially if analysts need
to prefilter measurements or channels out of bigger data sets.

6 Conclusion and Discussion

In this paper we have discussed a database support for automotive analysis.
Key aspects, like choice of database systems and schemas, pushdown of opera-
tions into the database, as well as data import have been discussed. It could be
shown that database systems does not only provide needed scalability but also
accelerate basic methods for automotive analysis.

As this project started as an investigation of several systems and storage
types, there are plenty of opportunities for further, more detailed investigations
in the near future. One of these: the pushdown of the import of MDF files into the
database has already been discussed in subsection 4.3. Additionally, we would
like to investigate more inter-measurement analysis on big data, as we expect
this kind of operations to be very beneficial with parallel relational database
solutions, as well as solutions using apache spark and NoSQL systems. Further-
more, we would like to include more operations for time series analysis. This
includes in-database pattern recognition, for example peak-detection, or oper-
ations we have previously investigated in SQL, like machine learning methods
[13] or fourier analysis [15]. These operations could be further combined with
index structures in order to offer analysts possibilities to search for special curve
progressions over multiple files.
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